高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例

翟羽佳 马君霞 马旭 杨洋 张润

翟羽佳, 马君霞, 马旭, 杨洋, 张润. 基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例[J]. 沉积学报, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
引用本文: 翟羽佳, 马君霞, 马旭, 杨洋, 张润. 基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例[J]. 沉积学报, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
ZHAI YuJia, MA JunXia, MA Xu, YANG Yang, ZHANG Run. Sand Body Description from Seismic Inversion Based on the Control of Braided River Reservoir Characteristics: Taking the lower of H 8 formation in Sulige gas field as an example[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
Citation: ZHAI YuJia, MA JunXia, MA Xu, YANG Yang, ZHANG Run. Sand Body Description from Seismic Inversion Based on the Control of Braided River Reservoir Characteristics: Taking the lower of H 8 formation in Sulige gas field as an example[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102

基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例

doi: 10.14027/j.issn.1000-0550.2022.102
详细信息
    作者简介:

    翟羽佳,女,1984年出生,工程师,油气田开发,E-mail: [email protected]

    通讯作者:

    马君霞,女,油气藏精细描述、储层预测,E-mail: [email protected]

Sand Body Description from Seismic Inversion Based on the Control of Braided River Reservoir Characteristics: Taking the lower of H 8 formation in Sulige gas field as an example

  • 摘要: 目的 干扰试井显示苏里格气田主力产气层盒8下段砂体连通性差,SD27-36区块密井网(500 m×600 m)条件下砂体展布特征仍不明确。亟需探索砂体规模及叠置方式的刻画方法,以明确井间砂体的连通性。 方法 将现代河流和野外露头观测结果与地质统计学反演结合,以观测结果优化反演参数并建立刻画模型,精细识别砂体边界及其叠置关系,实现砂体三维空间定量刻画。 结果与结论 观测显示盒8下段辫状河单心滩砂体纵横向剖面上呈孤立、对接、切叠等多种接触关系,单砂体平面规模小(长200~600 m,宽50~250 m),以叠置、复合方式形成特定形态的复合心滩砂体。地质统计学反演获得的砂体三维刻画结果边界清晰,井间砂体与井点岩性过渡自然,砂体规模与沉积观测结果相似,砂体连通性认识与干扰试井试验结果符合率达87%。本次砂体刻画结果及方法不仅能指导苏里格气田的勘探和开发部署,也可以为其他辫状河砂体认识提供借鉴。
  • 图  1  (a)鄂尔多斯盆地构造划分以及研究区(SD27⁃36区块)位置图;(b)研究区井网分布图

    Figure  1.  (a) Structural division of the Ordos Basin and location of the study area (SD 27⁃36 block);(b) distribution of production wells in the study area

    图  2  鄂尔多斯盆地苏里格气田干扰试井井组气层测井曲线特征对比图

    Figure  2.  Characteristic comparison of logging curves from the disturbance test well group in Sulige gas field, Ordos Basin

    图  3  现代辫状河沉积卫星影像图

    (a, b) Yarlung Zangbo River; (c) Tuotuo River; (d) Knik River, Alaska, USA

    Figure  3.  Satellite images of modern braided river sediments

    Fig.3

    图  4  不同现代辫状河心滩砂体宽度与长度关系图

    Figure  4.  Relationship between width and length of different modern braided riverbank sand bodies

    图  5  野外露头剖面中的砂体接触关系图

    (a, b) Baode profile; (c) Fugu profile

    Figure  5.  Map of sand body contact relationship in outcrop profiles

    Fig.5

    图  6  不同野外辫状河剖面砂体厚度与宽度关系图

    Figure  6.  Relationship between thickness and width of sand bodies in different braided river profiles

    图  7  鄂尔多斯盆地苏里格气田砂岩和泥岩波阻抗分布范围图

    Figure  7.  Distribution of wave impedance of sandstone and mudstone in Sulige gas field, Ordos Basin

    图  8  地质统计学反演砂岩概率剖面地质方法解析图

    Figure  8.  Analysis of geostatistical inversion of sandstone probability profile

    图  9  (a)SD280干扰井组地质统计学反演概率体剖面图;(b)地质解析的气藏剖面图

    Figure  9.  (a) Geostatistical inversion probability body profile of SD280 interference well group; (b) profile of geologically resolved gas reservoir

    图  10  (a)三维数据体过井剖面示意图;(b)8   2中部砂体展布图

    Figure  10.  (a) Three⁃dimensional data volume crossing profile; (b) distribution map of sand bodies in the middle of the 2nd layer of the lower of He 8 formation

    表  1  鄂尔多斯盆地二叠系地层划分表

    Table  1.   Stratigraphic division of the Ordos Basin

    亚段小层
    上古生界二叠系上石盒子组1~4段
    下石盒子组5~7段
    8段8上81
    82
    8下81
    82
    山西组1段
    下载: 导出CSV

    表  2  不同现代辫状河心滩砂体测量参数表

    Table  2.   Measurement parameters of different modern braided riverbank sand bodies

    河流起点终点测量点数回归公式长宽比相关系数R2
    单心滩复合心滩
    Knik 河(美国)W212 rent mN642 rentW205 rent mN605 rent2715L=2.820 0×H-27.7232.820.85
    Kandik河(美国)W209ik0×H-N629ik0×H-W205ik0×H-2N595ik0×H-2117L=2.655 2×H-27.6582.660.78
    Tanana河(美国)W210na52×H-N620na52×HW205na52×H-N585na52×H4914L=2.755 3×H+1.061 22.760.86
    沱沱河E9067553×HN3467553×HE9267553×HN3367553×H2520L=3.208 9×H-50.3593.210.81
    雅鲁藏布江E91布江089×N29布江089×HE94布江089×HN29布江089×H4639L=2.235 8×H+82.0522.240.88
    下载: 导出CSV

    表  3  野外剖面砂体规模及形态

    Table  3.   Scale and morphology of sand bodies in field profiles

    剖面位置剖面编号测点砂体厚度/m砂体宽度/m宽厚比砂体形态
    府谷天生桥剖面11-14.318242.3底平顶凸透镜状
    1-21.26050.0底平顶凸透镜状
    1-32.012562.5厚层板状
    1-42.03824.0底平顶凸透镜状
    1-51.63125.6顶平底凸透镜状
    1-63.26027.2楔状
    1-71.5200133.0席状
    剖面22-13.310531.8顶平底凸透镜状
    2-22.818064.3厚层板状
    2-32.29643.6底平顶凸透镜状
    2-44.617538.0楔状
    2-53.08929.7厚层板状
    剖面33-14.515036.2透镜状
    3-21.78047.0顶平底凸透镜状
    3-32.616226.7厚层板状
    3-46.08031.1顶平底凸透镜状
    保德桥头剖面44-15.010020.0透镜状
    4-22.518774.8底平顶凸透镜状
    4-33.39127.6楔状
    下载: 导出CSV

    表  4  地质统计学反演变差函数参数对比表

    Table  4.   Comparison of the geostatistical inverse evolution difference functions

    参数常规统计结果地质测量结果最终优化结果
    变差函数水平变差4.5 m×960 m×1 920 m复合心滩砂宽度:100~600 m长度:300~1 500 m4.5 m×300 m×600 m
    纵向变差4.5 m×180 m×360 m单心滩砂厚度:1~5 m宽度:50~250 m长度:200~600 m4.5 m×150 m×300 m
    下载: 导出CSV
  • [1] 杨华,付金华,刘新社,等. 鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J]. 石油勘探与开发,2012,39(3):295-303.

    Yang Hua, Fu Jinhua, Liu Xinshe, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J]. Petroleum Exploration and Development, 2012, 39(3): 295-303.
    [2] 杨华,魏新善. 鄂尔多斯盆地苏里格地区天然气勘探新进展[J]. 天然气工业,2007,27(12):6-11.

    Yang Hua, Wei Xinshan. New progress achieved by natural gas exploration in Sulige area[J]. Natural Gas Industry, 2007, 27(12): 6-11.
    [3] 刘晓鹏,赵小会,康锐,等. 鄂尔多斯盆地北部盒8段砂体形成机理分析[J]. 岩性油气藏,2015,27(5):196-203.

    Liu Xiaopeng, Zhao Xiaohui, Kang Rui, et al. Formation mechanism of sand bodies of the Eighth member of Shihezi Formation in northern Ordos Basin[J]. Lithologic Reservoirs, 2015, 27(5): 196-203.
    [4] 何自新,付金华,席胜利,等. 苏里格大气田成藏地质特征[J]. 石油学报,2003,24(2):6-12.

    He Zixin, Fu Jinhua, Xi Shengli, et al. Geological features of reservoir formation of Sulige gas field[J]. Acta Petrolei Sinica, 2003, 24(2): 6-12.
    [5] 何顺利,兰朝利,门成全. 苏里格气田储层的新型辫状河沉积模式[J]. 石油学报,2005,26(6):25-29.

    He Shunli, Lan Zhaoli, Chengquan Men. New braided river model in Sulige gas field of Ordos Basin[J]. Acta Petrolei Sinica, 2005, 26(6): 25-29.
    [6] 卢志远,马世忠,何宇,等. 鄂尔多斯盆地砂质辫状河夹层特征:以苏东27-36密井网区为例[J]. 断块油气田,2018,25(6):704-708,714.

    Lu Zhiyuan, Ma Shizhong, He Yu, et al. Characte-ristics of sandy braided river intercalations in Ordos Basin: Taking Sudong 27-36 tight well area for example[J]. Fault-Block Oil & Gas Field, 2018, 25(6): 704-708, 714.
    [7] 李易隆,贾爱林,冀光,等. 鄂尔多斯盆地中—东部下石盒子组八段辫状河储层构型[J]. 石油学报,2018,39(9):1037-1050.

    Li Yilong, Jia Ailin, Ji Guang, et al. Reservoir architecture of braided river in member 8 of Xiashihezi Formation, central-eastern Ordos Basin[J]. Acta Petrolei Sinica, 2018, 39(9): 1037-1050.
    [8] 单敬福,张彬,赵忠军,等. 复合辫状河道期次划分方法与沉积演化过程分析:以鄂尔多斯盆地苏里格气田西区苏X区块为例[J]. 沉积学报,2015,33(4):773-785.

    Shan Jingfu, Zhang Bin, Zhao Zhongjun, et al. Single stage and sedimentary evolution process analysis of braided river: A case from SuX block of western Sulige gas field in Ordos Basin[J]. Acta Sedimentologica Sinica, 2015, 33(4): 773-785.
    [9] 于兴河. 油气储层表征与随机建模的发展历程及展望[J]. 地学前缘,2008,15(1):1-15.

    Yu Xinghe. A review of development course and prospect of petroleum reservoir characterization and stochastic modeling[J]. Earth Science Frontiers, 2008, 15(1): 1-15.
    [10] 王玥,郭彦如,张延玲,等. 鄂尔多斯盆地东北部山西组层序格架下的砂体成因类型、构型及分布[J]. 岩性油气藏,2018,30(3):80-91.

    Wang Yue, Guo Yanru, Zhang Yanling, et al. Genetic types, configurations and distribution of sand bodies of Shanxi Formation in northeastern Ordos Basin[J]. Lithologic Reservoirs, 2018, 30(3): 80-91.
    [11] 于兴河. 油田开发中后期储层面临的问题与基于沉积成因的地质表征方法[J]. 地学前缘,2012,19(2):1-14.

    Yu Xinghe. Existing problems and sedimentogenesis-based methods of reservoir characterization during the middle and later periods of oilfield development[J]. Earth Science Frontiers, 2012, 19(2): 1-14.
    [12] 赵翰卿. 储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J]. 大庆石油地质与开发,2002,21(6):16-18,43.

    Zhao Hanqing. Approach to the study thinking about reservoir heterogeneous system, sand-body internal construction structure and flow unit[J]. Petroleum Geology & Oilfield Development in Daqing, 2002, 21(6): 16-18, 43.
    [13] 晁彩霞,于俊峰,袁丙龙,等. 波形指示反演在海底扇砂体边界刻画中的应用[J]. 断块油气田,2021,28(5):645-648.

    Chao Caixia, Yu Junfeng, Yuan Binglong, et al. Application of waveform indication inversion in boundary characterization of sandbody in submarine fan[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 645-648.
    [14] 张宪国,吴啸啸,黄德榕,等. 极限学习机驱动的地震多属性融合识别曲流带单一点坝[J]. 石油地球物理勘探,2021,56(6):1340-1350.

    Zhang Xianguo, Wu Xiaoxiao, Huang Derong, et al. Single point bar interpretation in meandering belt with extreme learning machine driven multiple seismic attributes fusion[J]. Oil Geophysical Prospecting, 2021, 56(6): 1340-1350.
    [15] 马志欣,吴正,张吉,等. 基于动静态信息融合的辫状河储层构型表征及地质建模技术[J]. 天然气工业,2022,42(1):146-158.

    Ma Zhixin, Wu Zheng, Zhang Ji, et al. Static and dynamic information fusion based reservoir architecture characterization and 3D geological modeling technology for braided river reservoirs[J]. Natural Gas Industry, 2022, 42(1): 146-158.
    [16] 王香文,刘红,滕彬彬,等. 地质统计学反演技术在薄储层预测中的应用[J]. 石油与天然气地质,2012,33(5):730-735.

    Wang Xiangwen, Liu Hong, Teng Binbin, et al. Application of geostatistical inversion to thin reservoir prediction[J]. Oil & Gas Geology, 2012, 33(5): 730-735.
    [17] 孙思敏,彭仕宓. 地质统计学反演方法及其在薄层砂体预测中的应用[J]. 西安石油大学学报(自然科学版),2007,22(1):41-44,48.

    Sun Simin, Peng Shimi. Geostatistical inversion method and its application in the prediction of thin reservoirs[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2007, 22(1): 41-44, 48.
    [18] 董奇,卢双舫,张学娟,等. 地质统计学反演参数选取及反演结果可靠性分析[J]. 物探与化探,2013,37(2):328-332,337.

    Dong Qi, Lu Shuangfang, Zhang Xuejuan, et al. Selection of parameters and reliability analysis of results in geostatistical inversion method[J]. Geophysical & Geochemical Exploration, 2013, 37(2): 328-332, 337.
    [19] 刘振峰,董宁,张永贵,等. 致密碎屑岩储层地震反演技术方案及应用[J]. 石油地球物理勘探,2012,47(2):298-304,352.

    Liu Zhenfeng, Dong Ning, Zhang Yonggui, et al. Seismic inversion program for tight clastic reservoir and its application[J]. Oil Geophysical Prospecting, 2012, 47(2): 298-304, 352.
    [20] 李文厚,魏红红,赵虹,等. 苏里格庙地区二叠系储层特征及有利相带预测[J]. 西北大学学报(自然科学版),2002,32(4):335-340.

    Li Wenhou, Wei Honghong, Zhao Hong, et al. Prediction of oil-bearing facies belts and reservoir characteristics of Permian system in Suligemiao region[J]. Journal of Northwest University (Natural Science Edition), 2002, 32(4): 335-340.
    [21] 文华国,郑荣才,高红灿,等. 苏里格气田苏6井区下石盒子组盒8段沉积相特征[J]. 沉积学报,2007,25(1):90-98.

    Wen Huaguo, Zheng Rongcai, Gao Hongcan, et al. Sedimentary facies of the 8th member of lower Shihezi Formation in Su6 area, Sulige gas field[J]. Acta Sedimentologica Sinica, 2007, 25(1): 90-98.
    [22] 廖保方,张为民,李列,等. 辫状河现代沉积研究与相模式:中国永定河剖析[J]. 沉积学报,1998,16(1):34-39.

    Liao Baofang, Zhang Weimin, Li Lie, et al. Study on modern deposit of a braided stream and factes model:Taking the Yongding River as an example[J]. Acta Sedimentologica Sinica, 1998, 16(1): 34-39.
    [23] 甘泉. 远源细粒辫状河心滩坝演化与河流分叉的交互沉积过程:现代沉积启示与数值模拟分析[J]. 地质科技通报,2021,40(1):14-26.

    Gan Quan. Interaction and sedimentary process between the evolution of the bar and bifurcation of the river in the far-source fine-grained braided river: Numerical simulation analy-sis inspired by modern deposition[J]. Bulletin of Geological Science and Technology, 2021, 40(1): 14-26.
    [24] 付锁堂. 鄂尔多斯盆地北部上古生界沉积体系及砂体展布规律研究[D]. 成都:成都理工大学,2004.

    Fu Suotang. The study on the depositional system and sand body spreading regularity of Upper Paleozoic in north Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2004.
    [25] 肖红平,刘锐娥,张福东,等. 鄂尔多斯盆地二叠系盒8段沉积模式重建及其勘探意义[J]. 石油勘探与开发,2019,46(2):268-280.

    Xiao Hongping, Liu Rui’e, Zhang Fudong, et al. Sedimentary model reconstruction and exploration significance of Permian He 8 member in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2019, 46(2): 268-280.
    [26] 马远,蒋昌波,隆院男,等. 基于UAV航测数据的长江源辫状河道几何形态研究[J]. 泥沙研究,2021,46(4):35-41.

    Ma Yuan, Jiang Changbo, Long Yuannan, et al. Geometrical characte-ristics of braid channels in the source region of the Yangtze River based on UAV aerial survey data[J]. Journal of Sediment Research, 2021, 46(4): 35-41.
    [27] 李贝贝,李志威,胡旭跃,等. 长江源区河网纵剖面分析[J]. 山地学报,2018,36(3):470-481.

    Li Beibei, Li Zhiwei, Hu Xuyue, et al. Longitudinal profile of river networks in the Yangtze River source region[J]. Mountain Research, 2018, 36(3): 470-481.
    [28] 侯极,周勤,张春泽,等. 雅鲁藏布江中游游荡型河道演变规律及趋势预测[J]. 科学技术与工程,2018,18(28):143-150.

    Hou Ji, Zhou Qin, Zhang Chunze, et al. Riverbed evolution characteristics and trend prediction of the wandering channels in the middle of Yarlung Zangbo River[J]. Science Technology and Engineering, 2018, 18(28): 143-150.
    [29] 大卫·卡尔·施耐德. 中南阿拉斯加主要河流及其特征分析[J]. 戴长雷,杨朝晖,译. 黑龙江水利,2016,2(5):22-27.

    Snyder D K. Analysis of the rivers and their characteristics in southcentral Alaska[J]. Dai Changlei, Yang Zhaohui, trans. Heilongjiang Water Resources, 2016, 2(5): 22-27.
    [30] 李洋,戴长雷,于淼,等. 阿拉斯加育空地区水文地理区划分析[J]. 黑龙江水利,2017,3(10):33-37.

    Li Yang, Dai Changlei, Yu Miao, et al. Analysis of hydrological and geographical division in Yukon Alaska[J]. Heilongjiang Water Resources, 2017, 3(10): 33-37.
    [31] 何维领,李少华,王军,等. 基于水槽沉积模拟实验的不同类型辫状河心滩坝发育特征及主控因素分析[J]. 东北石油大学学报,2019,43(6):13-22,82.

    He Weiling, Li Shaohua, Wang Jun, et al. Characteristics and key controlling factors of channel bar in different types of braided river based on flume tank experiments[J]. Journal of Northeast Petroleum University, 2019, 43(6): 13-22, 82.
    [32] 郭智,贾爱林,冀光,等. 致密砂岩气田储量分类及井网加密调整方法:以苏里格气田为例[J]. 石油学报,2017,38(11):1299-1309.

    Guo Zhi, Jia Ailin, Ji Guang, et al. Reserve classification and well pattern infilling method of tight sandstone gasfield: A case study of Sulige gasfield[J]. Acta Petrolei Sinica, 2017, 38(11): 1299-1309.
    [33] 于兴河,李胜利. 碎屑岩系油气储层沉积学的发展历程与热点问题思考[J]. 沉积学报,2009,27(5):880-895.

    Yu Xinghe, Li Shengli. The development and hotspot problems of clastic petroleum reservoir sedimentology[J]. Acta Sedimentologica Sinica, 2009, 27(5): 880-895.
    [34] 陈东阳,王峰,陈洪德,等. 鄂尔多斯盆地东部府谷天生桥剖面上古生界下石盒子组8段辫状河储层构型表征[J]. 石油与天然气地质,2019,40(2):335-345.

    Chen Dongyang, Wang Feng, Chen Hongde, et al. Characterization of braided river reservoir architecture of the Upper Paleozoic He 8 member on Fugu Tianshengqiao outcrop, eastern Ordos Basin[J]. Oil & Gas Geology, 2019, 40(2): 335-345.
    [35] 金振奎,杨有星,尚建林,等. 辫状河砂体构型及定量参数研究:以阜康、柳林和延安地区辫状河露头为例[J]. 天然气地球科学,2014,25(3):311-317.

    Jin Zhenkui, Yang Youxing, Shang Jianlin, et al. Sandbody architecture and quantitative parameters of single channel sandbodies of braided river: Cases from outcrops of braided river in Fukang, Liulin and Yanan areas[J]. Natural Gas Geoscience, 2014, 25(3): 311-317.
    [36] 侯中帅,陈世悦,王越,等. 鄂尔多斯盆地东缘保德地区上古生界层序地层与沉积相特征[J]. 古地理学报,2018,20(2):231-243.

    Hou Zhongshuai, Chen Shiyue, Wang Yue, et al. Characteristics of sequence stratigraphy and sedimentary facies of the Upper Paleozoic in Baode area, eastern margin of Ordos Basin[J]. Journal of Palaeogeography, 2018, 20(2): 231-243.
    [37] 樊鹏军,马良涛,王宗俊,等. 地质统计学反演中变差函数地质含义及求取方法探讨[J]. 地球物理学进展,2017,32(6):2444-2450.

    Fan Pengjun, Ma Liangtao, Wang Zongjun, et al. Variogram geological implication and its calculating method discussing for geostatistical inversion[J]. Progress in Geophysics, 2017, 32(6): 2444-2450.
    [38] 卢志远,何治亮,马世忠,等. 高能辫状河沉积特征及砂体分布:以苏东X密井网区为例[J]. 石油学报,2021,42(8):1003-1014.

    Lu Zhiyuan, He Zhiliang, Ma Shizhong, et al. Characte-ristics and sand distribution of high-energy braided river deposits: A case study of X tight well area in eastern Sulige region[J]. Acta Petrolei Sinica, 2021, 42(8): 1003-1014.
  • [1] 杨仁超, 董亮, 张吉, 王一, 樊爱萍.  苏里格气田西区地层水成因、分布规律与控制因素 . 沉积学报, 2022, 40(1): 267-280. doi: 10.14027/j.issn.1000-0550.2020.079
    [2] 林承焰, 程盼, 任丽华, 张静, 李宗奇, 刘书亭, 黄文松.  奥里诺科重油带MPE-3区块Oficina组辫状河三角洲沉积相定量刻画 . 沉积学报, 2019, 37(3): 610-622. doi: 10.14027/j.issn.1000-0550.2018.147
    [3] 刘福田, 李荣西, 刘新社, 杨鸣一, 赵帮胜, 吴小力, 覃小丽.  鄂尔多斯盆地苏里格西部气田“源控”主导的天然气成藏研究 . 沉积学报, 2019, 37(6): 1129-1139. doi: 10.14027/j.issn.1000-0550.2019.052
    [4] 王俊, 赵家宏, 腾军, 王天煦, 鲍志东, 张红静, 袁淑琴, 林艳波, 高银山.  浅水三角洲前缘砂体地震沉积学研究——以松南乾安地区上白垩统青三段为例 . 沉积学报, 2018, 36(3): 570-583. doi: 10.14027/j.issn.1000-0550.2018.082
    [5] 赵国祥, 官大勇, 刘朋波, 黄颖, 刘丹丹.  庙西南凸起馆陶组浅水辫状河三角洲沉积特征及砂体演化 . 沉积学报, 2018, 36(4): 807-817. doi: 10.14027/j.issn.1000-0550.2018.047
    [6] 牟传龙, 王秀平, 王启宇, 王远翀.  关于苏里格气田东二区盒8段储层成岩相的再认识 . 沉积学报, 2016, 34(2): 346-355. doi: 10.14027/j.cnki.cjxb.2016.02.013
    [7] 单敬福, 张彬, 赵忠军, 李浮萍, 王辉, 王博.  复合辫状河道期次划分方法与沉积演化过程分析——以鄂尔多斯盆地苏里格气田西区苏X区块为例 . 沉积学报, 2015, 33(4): 773-785. doi: 10.14027/j.cnki.cjxb.2015.04.016
    [8] 高分辨层序地层学中A/S值量化方法的研究与讨论 . 沉积学报, 2013, 31(6): 1088-1093.
    [9] 苏里格气田苏120区块盒8段浅水辫状河三角洲砂体演化规律 . 沉积学报, 2013, 31(2): 340-349.
    [10] 准噶尔盆地西北缘辫状河沉积模式探讨——以七区下侏罗统八道湾组辫状河沉积为例 . 沉积学报, 2012, 30(2): 264-273.
    [11] 苏里格气田东二区砂岩成岩作用与致密储层成因 . 沉积学报, 2012, 30(1): 111-119.
    [12] 席胜利.  鄂尔多斯盆地上古生界两大气田不同石英砂岩储层 特征对比研究 . 沉积学报, 2009, 27(2): 221-229.
    [13] 文华国.  苏里格气田苏6井区下石盒子组盒8段沉积相特征 . 沉积学报, 2007, 25(1): 90-98.
    [14] 叶泰然.  高分辨率层序地层学在鄂尔多斯盆地苏里格气田苏6井区下石盒子组砂岩储层预测中的应用 . 沉积学报, 2006, 24(2): 259-266.
    [15] 米敬奎, 刘新华, 杨孟达, 杨荣丰.  利用生烃动力学和碳同位素生烃动力学探索油气田气体来源 . 沉积学报, 2005, 23(3): 537-541.
    [16] 郑希民, 宋广寿, 王多云, 李凤杰, 王志坤, 李树同, 王峰, 刘自亮.  陕甘宁盆地陇东地区长8油组厚层非均质砂体的沉积学解剖 . 沉积学报, 2003, 21(2): 272-277.
    [17] 周丽清, 吴胜和, 熊琦华, 马晓芬, 郭燕华, 林双运.  吐哈盆地WM油田辫状河三角洲前缘砂体分析 . 沉积学报, 2000, 18(2): 248-252.
    [18] 伍涛, 王建国, 王德发.  辫状河砂体储层沉积学研究──以张家口地区露头砂体为例 . 沉积学报, 1998, 16(1): 27-33.
    [19] 王建国, 王林凤, 王德发.  扇前辫状河储层地质模型建立初探──以阜新盆地海洲露头砂体研究为例 . 沉积学报, 1995, 13(1): 41-47.
    [20] 陈淑珠, 陈国春.  桩西洼陷沙三下段沉积相与含油气关系 . 沉积学报, 1989, 7(1): 71-80.
  • 加载中
图(10) / 表 (4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  29
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27
  • 修回日期:  2022-08-31
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-09-30
  • 刊出日期:  2024-10-10

目录

    基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例

    doi: 10.14027/j.issn.1000-0550.2022.102
      作者简介:

      翟羽佳,女,1984年出生,工程师,油气田开发,E-mail: [email protected]

      通讯作者: 马君霞,女,油气藏精细描述、储层预测,E-mail: [email protected]

    摘要: 目的 干扰试井显示苏里格气田主力产气层盒8下段砂体连通性差,SD27-36区块密井网(500 m×600 m)条件下砂体展布特征仍不明确。亟需探索砂体规模及叠置方式的刻画方法,以明确井间砂体的连通性。 方法 将现代河流和野外露头观测结果与地质统计学反演结合,以观测结果优化反演参数并建立刻画模型,精细识别砂体边界及其叠置关系,实现砂体三维空间定量刻画。 结果与结论 观测显示盒8下段辫状河单心滩砂体纵横向剖面上呈孤立、对接、切叠等多种接触关系,单砂体平面规模小(长200~600 m,宽50~250 m),以叠置、复合方式形成特定形态的复合心滩砂体。地质统计学反演获得的砂体三维刻画结果边界清晰,井间砂体与井点岩性过渡自然,砂体规模与沉积观测结果相似,砂体连通性认识与干扰试井试验结果符合率达87%。本次砂体刻画结果及方法不仅能指导苏里格气田的勘探和开发部署,也可以为其他辫状河砂体认识提供借鉴。

    English Abstract

    翟羽佳, 马君霞, 马旭, 杨洋, 张润. 基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例[J]. 沉积学报, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
    引用本文: 翟羽佳, 马君霞, 马旭, 杨洋, 张润. 基于辫状河储层特征控制的地震反演砂体刻画——以苏里格气田盒8下段为例[J]. 沉积学报, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
    ZHAI YuJia, MA JunXia, MA Xu, YANG Yang, ZHANG Run. Sand Body Description from Seismic Inversion Based on the Control of Braided River Reservoir Characteristics: Taking the lower of H 8 formation in Sulige gas field as an example[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
    Citation: ZHAI YuJia, MA JunXia, MA Xu, YANG Yang, ZHANG Run. Sand Body Description from Seismic Inversion Based on the Control of Braided River Reservoir Characteristics: Taking the lower of H 8 formation in Sulige gas field as an example[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1711-1722. doi: 10.14027/j.issn.1000-0550.2022.102
      • 上古生界的大中型气田均是以岩性圈闭为主的致密砂岩气藏,鄂尔多斯盆地中二叠统下石盒子组8段(盒8段)为上古生界高产致密砂岩气藏的典型代表,位于鄂尔多斯盆地东北缘的苏里格气田为中国陆上目前最大整装天然气田[12]。研究显示苏里格气田盒8段砂体形成机理和分布规律主要受控于沉积相带,盒8下段主要为辫状河沉积储层[35],有效储集砂体厚度及性质变化大、连续性差。这导致砂体分布规律仍不明确,进而对生产井部署和天然气开采造成影响。因此,亟需对鄂尔多斯盆地苏里格气田盒8下段进一步展开精细砂体刻画。

        前人对于辫状河砂体储层已展开大量研究[68],总结辫状河沉积具有单砂体分布范围小、泥岩夹层发育、多个砂体叠置的特点。而夹层、多成因的渗流屏障是导致砂体连通性变差的主要成因,识别单期河道是解释砂体空间叠置关系的关键,也是目前生产中面临的难点之一。

        砂体精细刻画重点强调储层性质和空间变化两大核心特征[9]。地质学家通过对野外露头剖面的测量获得砂体展布规模和接触关系的认识,并将观测结果与层序地层学、沉积相相结合,形成了砂体表征的理论和方法,主要有划分地层的层序地层学方法、研究储层成因模式的沉积学方法、分析储层非均质性的成岩作用方法[1012]等。地球物理学家依据不同岩性之间物理性质的差异,通过测井、地震等特征差异分析实现对砂体的定量刻画,常用方法有地震反演、井间模拟、地质建模等[1314]。不同方法均以储层特征为出发点,在储层性质的空间变化刻画方面各有优缺点。储层地质方法对砂体纵向空间变化认识清晰,但对平面砂体边界难以精准识别;地球物理方法中地震资料对砂体平面空间变化认识更为精细,但纵向刻画精度欠缺。

        鄂尔多斯苏里格气田SD27-36密井网区盒8下段砂岩发育,厚度介于1~20 m,纵向上由1~8套砂体组成,平面上分布范围广,钻遇率在96%以上。前人认为盒8下段砂岩表现出“普遍连通、局部通而不畅乃至连而不通”的“泛连通体”特征[15]。但干扰试井试验显示,7个井组共30口井中只有3口观察井与激动井之间出现干扰现象,说明井间砂体连通性差,存在隔夹层、渗流屏障。前人多基于沉积相、层序地层学等方法对盒8段辫状河沉积开展砂体构型,井间砂体边界只能依据地质特征推测,部分构型结果与生产动态存在偏差[7]

        井震结合地质统计学反演方法在砂体精细刻画中可以实现地质和地球物理等多学科融合,具有横向上地震高预测性和纵向上测井高分辨率的特点[1617]。合理的初始框架采样率和符合地质条件的地质统计学参数是实现精细刻画的前提,前人多采用地震拟合手段获取地质统计学参数[1819],这忽略了实际地质信息。

        本文通过观测现代沉积和古代露头剖面,认识砂体的长、宽、厚等规模参数以及砂体形状、接触关系等空间特征。将砂体规模参数作为地质统计学反演的空间约束条件,获取地质和地震一体化的反演结果;基于砂体空间特征解析三维空间砂体形态、边界和叠置关系,实现盒8段辫状河砂体的精细刻画,指导气田井网部署和储量挖潜。

      • 鄂尔多斯盆地位于华北地台西部,根据现今构造格局可划分为六个主要一级构造单元,分别为伊陕斜坡、伊盟隆起、渭北隆起、晋西挠褶带、天环坳陷及西缘逆冲带等(图1a)。苏里格气田位于鄂尔多斯盆地西北部,构造上属伊陕斜坡二级构造单元,总体表现为一西倾的平缓单斜,断层不发育。苏里格气田主力含气层为上古生界二叠系下石盒子组8段、山西组1段(山1段),沉积厚度约为120 m。下石盒子组盒8段地层可划分为盒8下段(盒8下段)和盒8上段(盒8上段)(表1)。其中盒8下段厚度约40 m,为高能砂质辫状河沉积,以底负载搬运形式为主,河道“游荡性”特征明显,频繁摆动。砂体整体呈南北向展布,平面上大面积分布,纵向上多期叠置,储层具有极强的空间非均质性[2021]。盒8下段岩性主要为石英砂岩、岩屑砂岩、石英质岩屑砂岩,孔隙度主要分布在3%~13%,渗透率主要分布在(0.05~0.7)×10-3 μm2,属于低孔低渗储层。

        图  1  (a)鄂尔多斯盆地构造划分以及研究区(SD27⁃36区块)位置图;(b)研究区井网分布图

        Figure 1.  (a) Structural division of the Ordos Basin and location of the study area (SD 27⁃36 block);(b) distribution of production wells in the study area

        表 1  鄂尔多斯盆地二叠系地层划分表

        Table 1.  Stratigraphic division of the Ordos Basin

        亚段小层
        上古生界二叠系上石盒子组1~4段
        下石盒子组5~7段
        8段8上81
        82
        8下81
        82
        山西组1段

        研究区SD27-36区块位于苏里格气田东区中部,总面积约100 km2图1a)。自2009年投入开发,初期井网井距为600 m×800 m,至2017—2018年作为苏里格东区密井网试验区,井网井距加密至500 m×600 m(图1b)。

      • 鄂尔多斯盆地苏东气田的干扰试井试验可以对井间连通状况和储层非均质情况等进行识别。7个井组共30口井的干扰试井试验中只有3口观察井与激动井之间存在干扰现象。这说明井间砂体连通性差,500 m×600 m井网密度无法对砂体储层识别进行有效控制。

        以SD374干扰井组为例,激动井SD374与周边5口观察井开展的195天干扰试井试验均未见干扰现象。激动井SD374与观察井SD375和SD384的距离分别为500 m和600 m。尽管苏里格气田SD27-36密井网区盒8下段测井曲线具有明显相似性(图2),但干扰试井结果与砂体规模的常规认识不一致。这种现象在7个井组的干扰试井试验中普遍存在。因此,7个井组的干扰试井试验可能指示SD27-36区块盒8下段单心滩规模小,多心滩互相叠置的特点,造成了井间的天然不连通,进而使得500 m×600 m的井网井距无法有效覆盖单心滩砂体,无法在观察井与激动井之间识别干扰现象。

        图  2  鄂尔多斯盆地苏里格气田干扰试井井组气层测井曲线特征对比图

        Figure 2.  Characteristic comparison of logging curves from the disturbance test well group in Sulige gas field, Ordos Basin

      • 针对现代辫状河沉积的野外考察和数值三维模拟明确辫状河心滩坝在河流分叉过程中存在复杂的迁移合并、复合加积、分裂重组的演化过程,最终形成长条状纵向砂坝、斜列砂坝、横向砂坝[2223]

        早石盒子期,鄂尔多斯盆地北缘隆起带阿拉善、阴山和大青山持续隆升,北部和西北部物源供给充分。盒8下段沉积环境为季节性干旱气候环境,水体深度浅,古地形平坦,高能砂质辫状河河道摆动频繁[2425]。雅鲁藏布江中游拉萨—林芝、沱沱河、美国阿拉斯加克尼克(Knik)河、坎迪克(Kandik)河和塔纳诺(Tanana)河中游荡型辫状河河段与盒8下沉积相似,均为高能砂质辫状河沉积。雅鲁藏布江中游拉萨—林芝和沱沱河位于青藏高原,物源丰富,水量受季节性降水和冰川、融雪等影响,部分河段游荡型辫状河特征明显[2628]。阿拉斯加中南部大山环绕、水量充沛,多条河流汇集,属内陆和科珀河(铜河)流域气候区,大多数河流在冬季流量极小,而当春末融雪时流量就会大幅度增加,季节性特征明显[2930]。因此,基于卫星影像图观测雅鲁藏布江和阿拉斯加地区的心滩砂体规模形态,可以有效指导对盒8下段地下辫状河沉积特征认识。

        5条现代辫状河心滩坝多为顺河流流向分布的长条梭形、长椭圆形,多个心滩复合后,单个心滩砂体边界为清晰的废弃河道沉积(图3)。273个测量结果显示单心滩长度介于100~800 m、宽度介于50~400 m,其中80%的单心滩长度集中在200~600 m,86%的单心滩宽度集中在50~250 m。复合心滩长度介于300~1 500 m、宽度介于100~600 m。数据表明单心滩砂体的规模较小,复合心滩的规模相对较大。但是受辫状河流机理影响,复合心滩的规模有限,长度大于1 500 m宽度大于400 m的大规模复合心滩仅占复合心滩的4.7%。

        图  3  现代辫状河沉积卫星影像图

        Figure 3.  Satellite images of modern braided river sediments

        现代辫状河心滩砂体宽度与长度关系图显示,当心滩砂体宽度小于200 m,不同河流的砂体长宽比数值高度接近,砂体宽度大于200 m后,数据点比较分散(图4)。对每条河的测试点进行单独回归,结果显示不同辫状河的心滩长宽比介于2.2~3.2(表2),与前人水槽实验中地形坡度适中的限制—开阔型辫状河心滩长宽比2~5[31]相似,且符合目前苏里格砂体长宽比1.5~4.0[32]的基本认识。

        图  4  不同现代辫状河心滩砂体宽度与长度关系图

        Figure 4.  Relationship between width and length of different modern braided riverbank sand bodies

        表 2  不同现代辫状河心滩砂体测量参数表

        Table 2.  Measurement parameters of different modern braided riverbank sand bodies

        河流起点终点测量点数回归公式长宽比相关系数R2
        单心滩复合心滩
        Knik 河(美国)W212 rent mN642 rentW205 rent mN605 rent2715L=2.820 0×H-27.7232.820.85
        Kandik河(美国)W209ik0×H-N629ik0×H-W205ik0×H-2N595ik0×H-2117L=2.655 2×H-27.6582.660.78
        Tanana河(美国)W210na52×H-N620na52×HW205na52×H-N585na52×H4914L=2.755 3×H+1.061 22.760.86
        沱沱河E9067553×HN3467553×HE9267553×HN3367553×H2520L=3.208 9×H-50.3593.210.81
        雅鲁藏布江E91布江089×N29布江089×HE94布江089×HN29布江089×H4639L=2.235 8×H+82.0522.240.88
      • 野外露头观测是认识特定地层的砂体长、宽和厚度,砂体上下泥岩夹层的厚度和砂泥组合形式,以及不同砂体横纵向接触关系的一种方法,这种方法可以建立砂体在三维空间的展布模型[33]。砂体边界的精确界定,影响反演纵向单元上下控制界面的解释精度和单心滩砂体厚度的最小值,也决定了纵向单元的步长参数取值。同时,泥岩夹层的精细定义和刻画,决定砂泥比参数的精确取值以及反演结果中砂体空间的接触关系及复合模式。

        鄂尔多斯盆地东缘出露准格尔黑岱沟、府谷县城、保德桥头、保德扒楼沟、兴县关家崖和柳林成家庄等一系列上古生界露头剖面,其中盒8下段在山西保德桥头镇剖面和陕西府谷天生桥剖面有非常好的出露(图1a)。前人认为山西保德桥头镇剖面和陕西府谷天生桥剖面盒8下段为来自北部物源的辫状河沉积体系,保德盒8下段主要为灰色、灰绿色中砂岩,府谷天生桥剖面盒8段厚度约59.9 m,其中盒8下段主要为灰绿色和黄绿色含砾粗砂岩—中砂岩[3436]。山西保德桥头镇剖面和陕西府谷天生桥剖面出露的盒8下段沉积与SD27-36区块的沉积时空、沉积环境以及物源一致,利用野外露头的砂体沉积规模、形态和接触关系可以为地震反演提供参数。

        两个露头剖面的盒8下段砂体形态具有一致性,心滩形态主要为透镜状、板状、楔状,其中板状、楔状则是透镜状砂体或部分砂体在不同角度下的剖面显示(图5)。单敬福等[28]将河道砂体的接触关系分为孤立式、对接式、切叠式、叠加式和复合式。这五种接触方式在两个露头剖面盒8下段辫状河心滩砂体露头中均有明显表征,其中孤立式、对接式接触中不同砂体之间都存在岩性变化或泥岩夹层导致砂体不连通,而切叠式、叠加式、复合式因冲刷作用可不存在泥岩夹层,形成多个砂体间的连通。

        图  5  野外露头剖面中的砂体接触关系图

        Figure 5.  Map of sand body contact relationship in outcrop profiles

        由于自然条件限制,野外露头往往无法观测到同一砂体的两侧边界。盒8下段心滩砂体整体呈南北向展布,野外测量剖面多以东西向为主,根据剖面观测的方向、砂体倾向及辫状河心滩砂体透镜状形态,对砂体宽度进行测定。本次测量中府谷剖面实测参数点多,且宽厚比相对集中,保德剖面参数点少且相对离散。因此,本研究优选观测条件较好的府谷剖面砂体数据,统计透镜状砂体的厚度与宽度关系并解剖砂体规模特征(表3图6)。结果显示,心滩砂体的厚度主要为1~5 m,宽度介于30~200 m,宽度与厚度间的相关公式为L=35.724×H-4.085 1,宽厚比为35.7。野外露头测量的砂体宽度范围与现代辫状河单心滩砂体宽度相对一致,均指示盒8下段单心滩砂体规模小,多心滩互相叠置的特点。

        表 3  野外剖面砂体规模及形态

        Table 3.  Scale and morphology of sand bodies in field profiles

        剖面位置剖面编号测点砂体厚度/m砂体宽度/m宽厚比砂体形态
        府谷天生桥剖面11-14.318242.3底平顶凸透镜状
        1-21.26050.0底平顶凸透镜状
        1-32.012562.5厚层板状
        1-42.03824.0底平顶凸透镜状
        1-51.63125.6顶平底凸透镜状
        1-63.26027.2楔状
        1-71.5200133.0席状
        剖面22-13.310531.8顶平底凸透镜状
        2-22.818064.3厚层板状
        2-32.29643.6底平顶凸透镜状
        2-44.617538.0楔状
        2-53.08929.7厚层板状
        剖面33-14.515036.2透镜状
        3-21.78047.0顶平底凸透镜状
        3-32.616226.7厚层板状
        3-46.08031.1顶平底凸透镜状
        保德桥头剖面44-15.010020.0透镜状
        4-22.518774.8底平顶凸透镜状
        4-33.39127.6楔状

        图  6  不同野外辫状河剖面砂体厚度与宽度关系图

        Figure 6.  Relationship between thickness and width of sand bodies in different braided river profiles

      • 地震反演要求足够的精度以及可区分目的层段的砂泥岩分布状况。野外露头和测井资料显示盒8下段心滩砂体厚度介于1~5 m,对应地震波反射时间介于0.25~1.30 ms,通常地震数据纵向采样率为2 ms,横向采样率为15 m,井震结合的地质统计学反演以井点的实际岩性作为统计学计算的“种子点”,变差函数为计算步长,地震数据为空间约束条件,可以实现纵向高分辨率和空间高精度的砂体刻画。120口井的井点波阻抗数据统计显示,砂岩和泥岩波阻抗分布范围分别为(1.0~1.5)×107 kg·(m2·s)-1、(0.7~1.3)×107 kg·(m2·s)-1,砂泥岩主体在纵波阻抗单参数范围内可区分(图7),满足叠后反演的基本条件。

        图  7  鄂尔多斯盆地苏里格气田砂岩和泥岩波阻抗分布范围图

        Figure 7.  Distribution of wave impedance of sandstone and mudstone in Sulige gas field, Ordos Basin

        变差函数用来定量描述岩性空间变化,是反演最关键的参数之一。通常情况下水平变差函数是基于地震确定性反演的波阻抗属性结果试错寻找的最优值,纵向变差函数基于井点数据统计,二者缺乏明确的地质含义[37]。复合心滩砂代表了空间上砂体的最大分布范围,将现代和古代辫状河沉积观测的复合砂体长、宽等参数范围赋予水平变差函数(表4),代表反演时岩性平面上搜索的最大范围,该赋值方法不仅优化地震统计结果,同时使得变差函数具有特定的地质含义。单心滩砂代表纵向砂体叠置的最小单元以及砂体空间变化的最小范围,将单心滩砂的测量结果赋予纵向变差函数,在保证井点统计精度的同时赋予纵向砂体空间上连续变化的特性。通过岩性空间模拟,预设多个单砂体在空间上复合、叠置后形成复合砂体的规模,并将此预设结果用于反演约束。

        表 4  地质统计学反演变差函数参数对比表

        Table 4.  Comparison of the geostatistical inverse evolution difference functions

        参数常规统计结果地质测量结果最终优化结果
        变差函数水平变差4.5 m×960 m×1 920 m复合心滩砂宽度:100~600 m长度:300~1 500 m4.5 m×300 m×600 m
        纵向变差4.5 m×180 m×360 m单心滩砂厚度:1~5 m宽度:50~250 m长度:200~600 m4.5 m×150 m×300 m

        基于地震资料回归水平变差函数长、宽分别为1 920 m和960 m,远大于现代河流和古代剖面的观测结果,以此参数作为反演变差函数,必然形成大范围分布的砂体。因此,本文优选辫状河复合心滩长宽分布频率最高的600 m和300 m作为水平变差函数。实际井点统计的纵向变差函数,剔除了泥质夹层,纵向厚度1.2 ms代表4.5 m砂岩厚度,符合野外露头测量结果。此外,平面参数(长360 m和宽180 m)与单心滩砂体的统计结果接近。但考虑井点数据与观测数据的协调,选取长宽观测结果频率最高的300 m和150 m作为纵向变差。优化后的反演控制函数,不仅具有清晰的地质含义,同时体现辫状河的沉积特点。

      • 以砂岩概率大于30%作为截止值,获取地质统计学反演砂岩概率体,反演成果剖面砂体边界清晰,井间砂体与井点岩性过渡自然,其规模与现代、古代辫状河沉积观测结果吻合,砂体间孤立、切叠、叠加等接触关系清晰,符合实际地质特征(图8),与7个井组的干扰试井试验结果相吻合。

        图  8  地质统计学反演砂岩概率剖面地质方法解析图

        Figure 8.  Analysis of geostatistical inversion of sandstone probability profile

        “盲井”检查技术即通过预留10%的后验井(“盲井”)对空间预测的砂体进行验证,12口后验井盒8下段共发育103套砂体,其中地震反演预测145套准确,28套砂体无显示,另多预测4套砂体,错误率为19.5%,总体符合率为80.5%,部分井符合率可达100%,反演结果与井点吻合度较好,达到反演精度要求。

        反演砂体长度主要分布范围为200~1 400 m,宽度范围为100~700 m,其中尤以长度在200~800 m范围和宽度在100~400 m范围的砂体最为集中,与盒8下段复合砂体和单心滩砂体规模相一致。对比SD27-36区块的5个干扰井组射孔开采同一小层的砂体连通情况,多数未干扰井之间的砂体以孤立式存在,部分砂体为切叠关系,而干扰井间砂体则均为切叠或叠加关系,21对井的30套砂体刻画结果与干扰试井试验吻合的有26套砂体,总体符合率达87%。

        以地质统计学反演获得的砂岩概率体(图9a)作为空间砂体约束条件,结合现代和古代沉积特征认识,建立地质解析后的气藏剖面(图9b),可以清晰识别空间气藏的分布状态。SD280井组干扰试井总试验269天,观察井SD30井存在压力波动受到干扰,而其他3口观察井未受到干扰。气藏剖面显示,激动井SD280与观察井SD30盒8下段的生产层位均为气层,砂体空间接触关系为切叠关系,二者呈明显连通关系,干扰试井结果与砂体空间状态一致。

        图  9  (a)SD280干扰井组地质统计学反演概率体剖面图;(b)地质解析的气藏剖面图

        Figure 9.  (a) Geostatistical inversion probability body profile of SD280 interference well group; (b) profile of geologically resolved gas reservoir

      • 基于现代和古代辫状河沉积观测砂体空间特征,开展井震结合地质统计学反演砂岩概率体三维地质解析,获取砂体三维空间长宽厚、井间连通性和接触关系等参数。过井点作三维数据体不同方向的3~6条过井剖面,根据砂岩概率体的概率趋势、厚度和边界变化分析砂体接触关系和接触界面,确定不同方向砂体的长(L’)宽(W’)边界点,进而获取砂体的长度和宽度参数;以井点砂岩厚度(H)和地震预测厚度(H’)确定砂体厚度参数。8   18   2纵向上可分别细化为3个沉积单元[38]。以8   2中部沉积单元为例,其砂体平面分布图中清晰显示出辫状河砂体虽然大面积分布,但是单个心滩砂体的规模较小,砂体展布存在两个优势方向,分别为北偏西15°~35°和北偏东15°~35°(图10)。

        图  10  (a)三维数据体过井剖面示意图;(b)8   2中部砂体展布图

        Figure 10.  (a) Three⁃dimensional data volume crossing profile; (b) distribution map of sand bodies in the middle of the 2nd layer of the lower of He 8 formation

      • (1) 辫状河现代沉积观测心滩多为顺河流流向分布的长条梭形、长椭圆形,单心滩砂规模相对较小(长:200~600 m,宽:50~250 m),平面上多个单砂体叠置、复合,形成空间广泛分布的复合砂体(长:300~1 500 m、宽:100~600 m),不同辫状河的心滩长宽比介于2.2~3.2;野外露头心滩砂体的厚度主要分布在1~5 m,宽厚比为35.7,砂体之间呈孤立、对接、切叠等多种接触关系;气田动态显示目前井网条件下,井间砂体连通关系难以精确界定。

        (2) 将精细地质认识作为地质统计学反演的控制参数,可以实现辫状河沉积砂体的定量刻画,其砂体特征与现代、古代沉积观测结果一致,干扰试井试验结果符合率达87%,与气田动态特征相吻合。该方法不仅能指导苏里格气田的勘探和开采井的部署,也可以为其他辫状河砂体的三维刻画提供借鉴。

    参考文献 (38)

    目录

      /

      返回文章
      返回