高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岬湾海滩沉积物粒度粒形分布及其输运趋势的指示

程武风 陈沈良 钟小菁 郭俊丽 李鹏 胡进

程武风, 陈沈良, 钟小菁, 郭俊丽, 李鹏, 胡进. 岬湾海滩沉积物粒度粒形分布及其输运趋势的指示[J]. 沉积学报, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
引用本文: 程武风, 陈沈良, 钟小菁, 郭俊丽, 李鹏, 胡进. 岬湾海滩沉积物粒度粒形分布及其输运趋势的指示[J]. 沉积学报, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
CHENG WuFeng, CHEN ShenLiang, ZHONG XiaoJing, GUO JunLi, LI Peng, HU Jin. Grain Size and Shape Analysis as Indications of Sediment Transport in a Headland Bay Beach[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
Citation: CHENG WuFeng, CHEN ShenLiang, ZHONG XiaoJing, GUO JunLi, LI Peng, HU Jin. Grain Size and Shape Analysis as Indications of Sediment Transport in a Headland Bay Beach[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111

岬湾海滩沉积物粒度粒形分布及其输运趋势的指示

doi: 10.14027/j.issn.1000-0550.2022.111
基金项目: 

国家自然科学基金项目 41906184

海洋公益性行业科研专项经费项目 201405037

详细信息
    作者简介:

    程武风,男,1991年出生,博士研究生,海滩过程与地貌,E-mail: [email protected]

    通讯作者:

    陈沈良,男,教授,河口海岸学,E-mail: [email protected]

Grain Size and Shape Analysis as Indications of Sediment Transport in a Headland Bay Beach

Funds: 

National Natural Science Foundation of China 41906184

Public Science and Technology Research Funds Projects of Ocean, China 201405037

  • 摘要:目的与方法 】粒度和粒形作为沉积物的基本属性,蕴含着输运历史、运动方式和沉积环境等丰富的信息。通过利用动态图像法对海南岛保定湾岬湾海滩52个剖面253组表层沉积物样品的粒度粒形测试,分析探讨了粒度粒形沿岸和横向的空间分布特征,结合粒度趋势分析结果建立了粒形趋势分析模型。 结果 研究表明,保定湾开敞段、过渡段和遮蔽段相同岸段内的球形度在沿岸方向差异不大,横向方向有从陆向海逐渐减小的趋势。不同岸段间沉积物在粒度小于2.5 Φ时的球形度,在沿岸方向从开敞段至遮蔽段有逐渐减小的趋势。球形度的增大方向可指示沉积物输运趋势,建立的粒形趋势分析模型具有较高的准确性和优势,可计算任意粒度区间的输运趋势,可与粒度分析方法相结合以达到不同的研究目的。 结论 研究成果可为岬湾海滩的演变机制和稳定性研究提供理论支持。
  • 图  1  研究区域及海滩取样断面位置(据文献[26]修改)

    Figure  1.  Study area and location of beach sampling sites (modified from reference [26])

    图  2  研究区海滩积物特征

    (a) grain size distribution; (b) sphericity distribution; (c) sediment composition; (d) Folk’s classifications

    Figure  2.  Beach sediment properties in study area

    Fig.2

    图  3  研究区海滩剖面

    (a) exposed; (b) intermediate; and (c) sheltered

    Figure  3.  Beach profile of the study area

    Fig.3

    图  4  研究区沉积物粒度—粒形曲线横向分布特征

    Figure  4.  Cross⁃shore distribution of sediment grain size/shape

    图  5  研究区沉积物粒度—粒形曲线沿岸分布特征

    Figure  5.  Distributions of longshore properties of sediment grain size/shape curves

    图  6  研究区海滩沉积物净输运趋势

    (a) grain size trend; (b) grain sphericity

    Figure  6.  Net sediment transport pattern

    Fig.6

    图  7  采样点随机分配数据集计算的矢量长度频率分布图

    (a) grain size; (b) grain sphericity

    Figure  7.  Frequency distribution of vector length for randomly arranged sample grids

    Fig.7

    图  8  研究区海滩沉积物七组分粒形趋势分析获得的沉积物净输运趋势

    (a) clay; (b) fine silt; (c) coarse silt; (d) fine sand; (e) medium sand; (f) coarse sand; (g) granule gravel

    Figure  8.  Net sediment transport pattern by grain shape: trend analysis for the seven components of sediments

    Fig.8

    表  1  粒形趋势向方向Moran指数检验结果

    Table  1.   Moran’s index test of grain⁃shape trend vector direction

    z值p值Moran’s I值结果
    粒形输运趋势方向27.4300.86空间正相关
    检验标准>2.58<0.01>0,正相关空间正相关
    下载: 导出CSV
  • [1] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
    [2] Tholen K, Pähtz T, Yizhaq H, et al. Megaripple mechanics: Bimodal transport ingrained in bimodal sands[J]. Nature Communications, 2022, 13(1): 162.
    [3] Liang J, Liu J, Xu, G, et al. Grain-size characteristics and net transport patterns of surficial sediments in the Zhejiang nearshore area, East China Sea[J]. Oceanologia, 2020, 62(1): 12-22.
    [4] Vandenberghe J, Sun Y, Wang X, et al. Grain-size characterization of reworked fine-grained aeolian deposits[J]. Earth-Science Reviews, 2018, 177: 43-52.
    [5] Zhang P, Yao W Y, Liu G B, et al. Experimental study of sediment transport processes and size selectivity of eroded sediment on steep Pisha sandstone slopes[J]. Geomorphology, 2020, 363: 107211.
    [6] McLaren P. An interpretation of trends in grain size measures[J]. Journal of Sedimentary Petrology, 1981, 51(2): 611-624.
    [7] Gao S, Collins M. A critique of the “McLaren method” for defining sediment transport paths: Discussion[J]. Journal of Sedimentary Petrology, 1991, 61(1): 143-146.
    [8] Gao S, Collins M. Net sediment transport patterns inferred from grain-size trends, based upon definition of “transport vectors”[J]. Sedimentary Geology, 1992, 81(1/2): 47-60.
    [9] Oakey R J, Green M, Carling P A, et al. Grain-shape analysis: A new method for determining representative particle shapes for populations of natural grains[J]. Journal of Sedimentary Research, 2005, 75(6): 1065-1073.
    [10] Blott S J, Pye K. Particle shape: A review and new methods of characterization and classification[J]. Sedimentology, 2008, 55(1): 31-63.
    [11] Suzuki K, Fujiwara H, Ohta T. The evaluation of macroscopic and microscopic textures of sand grains using elliptic Fourier and principal component analysis: Implications for the discrimination of sedimentary environments[J]. Sedimentology, 2015, 62(4): 1184-1197.
    [12] Woronko B, Dłużewski M, Woronko D. Sand-grain micromorphology used as a sediment-source indicator for Kharga Depression dunes (western Desert, S Egypt) [J]. Aeolian Research, 2017, 29: 42-54.
    [13] Sandeep C S, He H, Senetakis K. An experimental micromechanical study of sand grain contacts behavior from different geological environments[J]. Engineering Geology, 2018, 246: 176-186.
    [14] van Hateren J A, van Buuren U, Arens S M, et al. Identifying sediment transport mechanisms from grain size–shape distributions, applied to Aeolian sediments[J]. Earth Surface Dynamics, 2020, 8(2): 527-553.
    [15] Bridge J S, Bennett S J. A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities[J]. Water Resources Research, 1992, 28(2): 337-363.
    [16] Domokos G, Jerolmack D J, Sipos A Á, et al. How river rocks round: resolving the shape-size paradox[J]. PLoS One, 2014, 9(2): e88657.
    [17] Sun R, Xiao H, Sun H L. Realistic representation of grain shapes in CFD–DEM simulations of sediment transport with a bonded-sphere approach[J]. Advances in Water Resources, 2017, 107: 421-438.
    [18] Novák-Szabó T, Sipos A Á, Shaw S, et al. Universal characteristics of particle shape evolution by bed-load chipping[J]. Science Advances, 2018, 4(3): eaao4946.
    [19] Jain R, Tschisgale S, Fröhlich J. Effect of particle shape on bedload sediment transport in case of small particle loading[J]. Meccanica, 2020, 55(2): 299-315.
    [20] Komar P D, Reimers C E. Grain shape effects on settling rates[J]. The Journal of Geology, 1978, 86(2): 193-209.
    [21] Dietrich W E. Settling velocity of natural particles[J]. Water Resources Research, 1982, 18(6): 1615-1626.
    [22] Shang Y, Kaakinen A, Beets C J, et al. Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape characteristics of Chinese Loess and red clay deposits[J]. Sedimentary Geology, 2018, 375: 36-48.
    [23] McCarthy G R. The rounding of beach sands[J]. American Journal of Science, 1933, s5-25(147): 205-224.
    [24] Williams A T, Morgan P. Quartz grain S.E.M. textural variations of the beach/dune interface, Long Island, U.S.A.[J]. Journal of Coastal Research, 1988 (Special.3): 37-45.
    [25] Shepard F P, Young R. Distinguishing between beach and dune sands[J]. Journal of Sedimentary Petrology, 1961, 31(2): 196-214.
    [26] 程武风,陈沈良,胡进. 海南万宁岬湾海岸海滩稳定性研究[J]. 海洋工程,2017,35(1):121-128.

    Cheng Wufeng, Chen Shenliang, Hu Jin. Stability of headland bay beaches on the east coast of Hainan Island[J]. The Ocean Engineering, 2017, 35(1): 121-128.
    [27] 严国柱,吴学益,杨树康,等. 海南岛主要构造体系的划分及其与石碌式富铁矿成矿关系的探讨[J]. 中山大学学报,1979, 18(3):103-122.

    Yan Guozhu, Wu Xueyi, Yang Shukang, et al. A discussion on major tectonic systems and their relation to the formation of the ferro-ferriginous ore of Shilu type in Hainan Island[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1979, 18(3): 103-122.
    [28] 薛玉龙,王雪木,杨凡. 海南万宁浅海表层沉积物粒度及地球化学特征对浅海砂矿的指示[J]. 中国矿业,2017,26(增刊1):220-226.

    Xue Yulong, Wang Xuemu, Yang Fan. Characteristics of sediment granularity and geochemistry indicate the Ti-Zr placer at Wanning, Hainan province[J]. China Mining Magazine, 2017, 26(Suppl.1): 220-226.
    [29] 王宝灿,陈沈良,龚文平,等. 海南岛港湾海岸的形成与演变[M]. 北京:海洋出版社,2006.

    Wang Baocan, Chen Shenliang, Gong Wenping, et al. Formation and evolution of the embayment coast of Hainan Island[M]. Beijing: China Ocean Press, 2006.
    [30] 罗章,蔡斌,陈沈良. 动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较[J]. 沉积学报,2016,34(5):881-891.

    Luo Zhang, Cai Bin, Chen Shenliang. Grain size and shape analysis of beach sediment using dynamic image analysis and comparison with sieving method[J]. Acta Sedimentologica Sinica, 2016, 34(5): 881-891.
    [31] Folk R L, Andrews P B, Lewis D W. Detrital sedimentary rock classification and nomenclature for use in New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1970, 13(4): 937-968.
    [32] Cox E P. A method of assigning numerical and percentage values to the degree of roundness of sand grains[J]. Journal of Paleontology, 1927, 1(3): 179-183.
    [33] Campaña I, Benito-Calvo A, Pérez-González A, et al. Assessing automated image analysis of sand grain shape to identify sedimentary facies, Gran Dolina archaeological site (Burgos, Spain) [J]. Sedimentary Geology, 2016, 346: 72-83.
    [34] Szabó T, Domokos G, Grotzinger J P, et al. Reconstructing the transport history of pebbles on Mars[J]. Nature Communications, 2015, 6: 8366.
    [35] Joo Y J, Soreghan A M, Madden M E E, et al. Quantification of particle shape by an automated image analysis system: A case study in natural sediment samples from extreme climates[J]. Geosciences Journal, 2018, 22(4): 525-532.
    [36] 王国庆,石学法,刘焱光,等. 粒径趋势分析对长江南支口外沉积物输运的指示意义[J]. 海洋学报,2007,29(6):161-166.

    Wang Guoqing, Shi Xuefa, Liu Yanguang, et al. Grain-size trend analysis on the south branch of the Changjiang Estuary in China and its implication to sediment transportation[J]. Acta Oceanologica Sinica, 2007, 29(6): 161-166.
    [37] MacCarthy G R, Huddle J W. Shape-sorting of sand grains by wind action[J]. American Journal of Science, 1938, s5-35(205): 64-73.
    [38] 国家海洋局908专项办公室. 海洋底质调查技术规程[M]. 北京:海洋出版社,2006.

    Project Office908of the State Oceanic Administration. Technical manual for submarine surface sediment survey[M]. Beijing: China Ocean Press, 2006.
    [39] López M, López I, Aragonés L, et al. The erosion on the east coast of Spain: Wear of particles, mineral composition, carbonates and Posidonia oceanica[J]. Science of the Total Environment, 2016, 572: 487-497.
    [40] Aragonés L, Pagán J I, López M P, et al. The impacts of Segura River (Spain) channelization on the coastal seabed[J]. Science of the Total Environment, 2016, 543: 493-504.
    [41] Masselink G, Puleo J A. Swash-zone morphodynamics[J]. Continental Shelf Research, 2006, 26(5): 661-680.
    [42] Salman A D, Verba A. New aproximate equations to estimate the drag coefficient of different particles of regular shape[J]. Periodica Polytechnica: Chemical Engineering, 1988, 32(4): 261-276
    [43] Moran P A P. Notes on continuous stochastic phenomena[J]. Biometrika, 1950, 37(1/2): 17-23.
    [44] Lee J, Li S W. Extending Moran's Index for measuring spatiotemporal clustering of geographic events[J]. Geographical Analysis, 2017, 49(1): 36-57.
    [45] Tepanosyan G, Sahakyan L, Zhang C S, et al. The application of Local Moran's I to identify spatial clusters and hot spots of Pb, Mo and Ti in urban soils of Yerevan[J]. Applied Geochemistry, 2019, 104: 116-123.
    [46] Poizot E, Anfuso G, Méar Y, et al. Confirmation of beach accretion by grain-size trend analysis: Camposoto beach, Cádiz, SW Spain[J]. Geo-Marine Letters, 2013, 33(4): 263-272.
    [47] Shang Y, Beets C J, Tang H, et al. Variations in the provenance of the Late Neogene red clay deposits in northern China[J]. Earth and Planetary Science Letters, 2016, 439: 88-100.
    [48] Schulte P, Lehmkuhl F. The difference of two laser diffraction patterns as an indicator for post-depositional grain size reduction in loess-paleosol sequences[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 126-136.
    [49] Torre G, Gaiero D M, Cosentino N J, et al. The paleoclimatic message from the polymodal grain-size distribution of Late Pleistocene-Early Holocene Pampean loess (Argentina)[J]. Aeolian Research, 2020, 42: 100563.
    [50] Weltje G J, Prins M A. Genetically meaningful decomposition of grain-size distributions[J]. Sedimentary Geology, 2007, 202(3): 409-424.
    [51] Chen J, Yang T B, Qiang M R, et al. Interpretation of sedimentary subpopulations extracted from grain size distributions in loess deposits at the sea of Azov, Russia[J]. Aeolian Research, 2020, 45: 100597.
    [52] Jiang Q D, Hao Q Z, Peng S Z, et al. Grain-size evidence for the transport pathway of the Xiashu loess in northern subtropical China and its linkage with fluvial systems[J]. Aeolian Research, 2020, 46: 100613.
    [53] López M, Baeza-Brotons F, López I, et al. Factors influencing the rate of beach sand wear: Activation layer thickness and sediment durability[J]. Science of the Total Environment, 2019, 658: 367-373.
    [54] Chmielowska D, Woronko B, Dorocki S. Applicability of automatic image analysis in quartz-grain shape discrimination for sedimentary setting reconstruction[J]. CATENA, 2021, 207: 105602.
    [55] Li D M, Li Y Y, Wang Z C, et al. Quantitative, SEM-based shape analysis of sediment particles in the Yellow River[J]. International Journal of Sediment Research, 2016, 31(4): 341-350.
  • [1] 李子龙, 范昌育, 惠潇, 邓秀芹, 孙勃, 韩晓洁, 王爱国, 王刚.  非常规沉积储层层理缝研究进展及趋势 . 沉积学报, 2024, 42(4): 1150-1163. doi: 10.14027/j.issn.1000-0550.2022.124
    [2] 彭雲, 于谦, 万洁颖, 杜智运, 王黎, 王韫玮, 高抒.  江苏海岸中部近岸沉积物重力流输运过程 . 沉积学报, 2023, 41(6): 1755-1767. doi: 10.14027/j.issn.1000-0550.2023.091
    [3] 林武辉, 余锦萍, 余克服, 刘昕明, 莫珍妮, 宁秋云, 李英花, 李玉婷.  北部湾涠洲岛海域沉积物中物质来源解析 . 沉积学报, 2021, 39(3): 621-630. doi: 10.14027/j.issn.1000-0550.2020.048
    [4] 卢斌, 邱振, 周川闽, 董大忠, 梁萍萍.  泥页岩沉积物理模拟研究进展与发展趋势 . 沉积学报, 2021, 39(4): 781-793. doi: 10.14027/j.issn.1000-0550.2021.016
    [5] 邵龙义, 王学天, 鲁静, 王东东, 侯海海.  再论中国含煤岩系沉积学研究进展及发展趋势 . 沉积学报, 2017, 35(5): 1016-1031. doi: 10.14027/j.cnki.cjxb.2017.05.013
    [6] 席雅娟, 师育新, 戴雪荣, 刘朝, 吴紫阳.  杭州湾潮滩沉积物黏土矿物空间差异与物源指示 . 沉积学报, 2016, 34(2): 315-325. doi: 10.14027/j.cnki.cjxb.2016.02.010
    [7] 罗章, 蔡斌, 陈沈良.  动态图像法应用于海滩沉积物粒度粒形测试及其与筛析法的比较 . 沉积学报, 2016, 34(5): 881-891. doi: 10.14027/j.cnki.cjxb.2016.05.007
    [8] 汕头近岸海域表层沉积物粒度特征及其输运趋势 . 沉积学报, 2014, 32(2): 314-324.
    [9] 辽东湾西岸典型岬湾海滩表层沉积物粒度分布特征及水动力条件浅析 . 沉积学报, 2014, 32(4): 700-709.
    [10] 陆源沉积岩物源分析研究进展与发展趋势 . 沉积学报, 2013, 31(1): 99-107.
    [11] 辽东湾周边河流沉积物碎屑矿物组成及其物源意义 . 沉积学报, 2013, 31(04): 663-671.
    [12] 杭州湾北岸芦潮港潮滩沉积物磁性特征的年际变化及其粒度控制 . 沉积学报, 2012, 30(3): 547-555.
    [13] 海南高隆湾海滩生物碎屑分布及其对沉积物粒度特征的影响 . 沉积学报, 2012, 30(5): 891-899.
    [14] 高抒.  沉积物粒径趋势分析:原理与应用条件 . 沉积学报, 2009, 27(5): 826-836.
    [15] 闵凤阳.  深圳湾西北部海域表层沉积物的分布特征及输运趋势 . 沉积学报, 2009, 27(4): 714-722.
    [16] 王爱军, 汪亚平, 杨旸.  江苏王港潮间带表层沉积物特征及输运趋势 . 沉积学报, 2004, 22(1): 124-129.
    [17] 陈敬安, 万国江, 徐经意.  洱海沉积物粒度记录与气候干湿变迁 . 沉积学报, 2000, 18(3): 341-345.
    [18] 王先兰.  南极长城湾及其附近沉积物初步研究 . 沉积学报, 1991, 9(4): 49-58.
    [19] 曹耀华, 赖志云, 刘怀波, 张昌民.  沉积模拟实验的历史现状及发展趋势 . 沉积学报, 1990, 8(1): 143-147.
    [20] 龚墀, 张立仁.  抚仙湖沉积物粒度特征 . 沉积学报, 1983, 1(1): 50-62.
  • 加载中
图(8) / 表 (1)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  20
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-09-09
  • 录用日期:  2022-11-17
  • 网络出版日期:  2022-11-17
  • 刊出日期:  2024-10-10

目录

    岬湾海滩沉积物粒度粒形分布及其输运趋势的指示

    doi: 10.14027/j.issn.1000-0550.2022.111
      基金项目:

      国家自然科学基金项目 41906184

      海洋公益性行业科研专项经费项目 201405037

      作者简介:

      程武风,男,1991年出生,博士研究生,海滩过程与地貌,E-mail: [email protected]

      通讯作者: 陈沈良,男,教授,河口海岸学,E-mail: [email protected]

    摘要: 目的与方法 】粒度和粒形作为沉积物的基本属性,蕴含着输运历史、运动方式和沉积环境等丰富的信息。通过利用动态图像法对海南岛保定湾岬湾海滩52个剖面253组表层沉积物样品的粒度粒形测试,分析探讨了粒度粒形沿岸和横向的空间分布特征,结合粒度趋势分析结果建立了粒形趋势分析模型。 结果 研究表明,保定湾开敞段、过渡段和遮蔽段相同岸段内的球形度在沿岸方向差异不大,横向方向有从陆向海逐渐减小的趋势。不同岸段间沉积物在粒度小于2.5 Φ时的球形度,在沿岸方向从开敞段至遮蔽段有逐渐减小的趋势。球形度的增大方向可指示沉积物输运趋势,建立的粒形趋势分析模型具有较高的准确性和优势,可计算任意粒度区间的输运趋势,可与粒度分析方法相结合以达到不同的研究目的。 结论 研究成果可为岬湾海滩的演变机制和稳定性研究提供理论支持。

    English Abstract

    程武风, 陈沈良, 钟小菁, 郭俊丽, 李鹏, 胡进. 岬湾海滩沉积物粒度粒形分布及其输运趋势的指示[J]. 沉积学报, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
    引用本文: 程武风, 陈沈良, 钟小菁, 郭俊丽, 李鹏, 胡进. 岬湾海滩沉积物粒度粒形分布及其输运趋势的指示[J]. 沉积学报, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
    CHENG WuFeng, CHEN ShenLiang, ZHONG XiaoJing, GUO JunLi, LI Peng, HU Jin. Grain Size and Shape Analysis as Indications of Sediment Transport in a Headland Bay Beach[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
    Citation: CHENG WuFeng, CHEN ShenLiang, ZHONG XiaoJing, GUO JunLi, LI Peng, HU Jin. Grain Size and Shape Analysis as Indications of Sediment Transport in a Headland Bay Beach[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1541-1552. doi: 10.14027/j.issn.1000-0550.2022.111
      • 粒度和粒形是沉积物最基本的属性,已广泛应用于沉积环境、沉积过程和输运机制等方面的研究[15]。海滩沉积物粒度参数的空间变化可反映沉积物输移模式和沉积动力环境演变,是海岸沉积动力过程综合作用的结果。McLarn[6]根据三个沉积物粒度参数(平均粒径、分选和偏度)建立了一维粒度趋势模型。在此基础上,Gao et al.[78]开发了二维粒度趋势分析模型定义沉积物净输运模式,并成功运用于许多河口、海岸和大陆架区域。

        沉积物粒形亦可以提供有关沉积环境、输送条件和物源等重要信息[914]。沉积物在输运和沉积过程中,粒度和粒形同时进行着分选。长期以来,许多学者对沉积物粒形在流体中的沉积、磨蚀和运动的影响进行了分析和建模[1519]。其中,对在风沙输运过程中粒形的作用研究较多[2022]。van Hateren et al.[14]通过沉积物粒度—形状分布的端元模型提出了风成沉积物的沉积模式,得到的结果比单独的粒度分布端元建模更清晰。Shang et al.[22]发现粒度和粒形特征可以识别粒度和粒形分选趋势、确定输运方式和重建输运路径。Novák-szabó et al.[18]通过分析河流卵石、海滩砂和砾石的磨蚀演变发现仅使用粒形即可推断沉积物的输运条件。因此,粒形是除粒度外潜在的沉积物输运参数。McCarthy[23]发现在沿岸沉积物输运方向上,规则颗粒的比例增加,另一方面,在对美国长岛海滩研究发现随着沿岸输运,沉积物颗粒圆度增加[24]。Shepard et al.[25]提出波浪会选择性地将更圆的颗粒输送到海滩上。

        本文选择海南岛东部万宁保定湾典型的岬湾海滩作为研究对象,使用动态图像法得到253个海滩表层沉积物的粒度粒形参数,据此分析沉积物粒度粒形分布特征及输运趋势,探讨粒形参数在输运趋势上的应用潜力,并建立了粒形输运趋势模型,以期明确各组分沉积物对海滩演变的影响,为解释海滩演变过程和海滩稳定性提供深入的理论基础,为海滩养护充填沙的选择提供技术支持。

      • 研究区保定湾位于海南岛东部万宁市的乌场岭至新群岭之间,地理坐标为110.42°~110.45° E,18.67°~18.73° N(图1)。在地质构造上该地区属琼东南凹陷带,基底为寒武纪的古老岩系,呈NE—SW向带展布[27]。保定湾为直线段(开敞段)充分发育的典型岬湾海岸,在北部乌场岭岩石岬角的掩护下,其弯曲段(遮蔽段)也得到了充分的发育,该海岸处于动态平衡状态[26]。海滩近岸表层沉积物平均含砂量介于65%~85%,粉砂含量次之,黏土含量最高仅为4%[28]。研究海区全年以混合浪为主,出现频率达78%,年均波高为0.9 m,最大波高可达5.2 m,年均潮差为0.92 m,平均潮位为140 cm,为弱潮浪控海岸[29]

        图  1  研究区域及海滩取样断面位置(据文献[26]修改)

        Figure 1.  Study area and location of beach sampling sites (modified from reference [26])

      • 于2018年12月开展了海滩地形测量和沉积物取样,每个断面设4~5个取样点,分别位于后滨、滩肩、滩面、水边和水下。取样时去掉覆盖的腐殖质和垃圾,取表层1~2 cm内的沉积物于自封袋内密封保存。由于采样过程中潮位和复杂的水下地形,部分断面无水下样品。研究区共布置了52条间距为150~200 m的断面,从南至北分别编号为BD01-BD52,对获取的253个样品首先取适量沉积物样品放入50 mL烧杯中,加入纯水,充分搅拌并浸泡12 h,抽去上清液后,入温度设置为105 ℃的烘箱并以恒温烘干24 h后,放置于干燥皿中冷却至室温,采用基于动态数字成像技术的多功能粒径粒形分析仪(Camsizer-X2)进行粒度粒形分析,获得以0.25 Φ间距的粒度分布及其对应的粒形参数。Camsizer-X2是德国莱驰科技公司基于ISO13322-2动态数字成像技术的粒度粒形分析仪,具有0.8 μm的分辨率和8 μm~8 mm的测量范围。该仪器测量结果重复性好,精度高,与筛析法测量结果的粒度级配曲线几乎完全重合[30]。样品通过漏斗和进样槽初分散后,通过振动装置将样品充分分散并振入测试腔。一次进样,可同时测得粒度分布、球形度、宽长比、对称度等粒形信息。

      • 使用Folk-Ward图解法参数公式计算粒度参数,即平均粒径、分选系数和偏态[1],根据福克(Folk)法对沉积物进行分类[31]。采用Gao et al.[78]提出的二维沉积物粒径趋势分析模型来获取海滩沉积物净输运趋势。该方法是通过比较每个采样点与周围相邻点沉积物的粒度参数后确定各采样点的粒径趋势矢量,对每个采样点及其相邻采样点的粒径趋势矢量求和。最后对其进行平滑处理,以消除“噪声”,从而得到研究区沉积物的净输运方向。长度表示此趋势矢量的显著性,方向为该采样点沉积物净输运方向。

        沉积物粒形包括球形度、宽长比、对称度和磨圆度,其中球形度是对沉积物颗粒球度的度量,其计算公式为:

        Sp=4πAU2 (1)

        式中:Sp为球形度,为无量纲参数;A为颗粒投影的面积;U为颗粒投影的周长。球形度取值范围为0(极窄杆状)到1(圆形)。该公式与定义为圆度[32]或高灵敏的圆度[33]公式相同,是颗粒形态学中应用最广泛的公式之一,并广泛用于描述沉积学中的砂砾形态研究[3435],因此本文粒形参数以球形度为代表分析。

      • 保定湾海滩各断面平均粒度球形度沿岸分布具有明显的空间变化(图2a)。平均粒径表现为从南至北Φ值逐渐增大,即沉积物从开敞段向遮蔽段由粗变细。其中,BD01-BD20断面沉积物的平均粒径Φ值变化幅度较小,而BD21-BD52断面的沉积物平均粒径Φ值逐渐增大。水边位置沉积物平均粒径Φ值较小且沿岸分布呈现较大的波动趋势。平均粒径值范围为-1.36~2.66 Φ,平均值为1.42 Φ。研究区域海滩表层沉积物断面平均组分含量如图2c,其中砂含量范围为84.50%~100%,占绝对的优势,黏土组分几乎缺失。根据Folk(含砾和不含砾)分类法[31],研究区表层沉积物类型为砂、含砾砂和砾质砂,其中砂占绝大部分(图2d)。平均球形度从南至北呈逐渐减小的趋势,后滨和滩肩位置处的平均球形度较海滩另外三处大,且在海滩北部这种差值变得更大。平均球形度范围为0.79~0.86,平均值为0.80(图2b)。

        图  2  研究区海滩积物特征

        Figure 2.  Beach sediment properties in study area

        保定湾海滩剖面沿岸分布特征如图3。开敞段海滩(1~23)的坡度范围为7.2°~10.9°,平均值为8.4°,海滩宽度范围为38.6~75.7 m,平均值为57.1 m。过渡段海滩(24~37)的坡度范围为3.5°~7.0°,平均值为4.7°,海滩宽度范围为64.9~121.4 m,平均值为92.6 m。遮蔽段海滩坡度范围为2.4°~3.8°,平均值为3.2°,海滩宽度范围为54.3~128.7 m,平均值为102.5 m。由于海滩开敞段近岸波浪能较大,而遮蔽段受岬角掩护近岸波浪能较小,导致了开敞段海滩坡度较大,过渡段次之,遮蔽段最小。

        图  3  研究区海滩剖面

        Figure 3.  Beach profile of the study area

      • 该岬湾沉积物粒度球形度关系曲线,在不同的岸段以及同一断面不同的采样点位置具有明显的差异(图4,5)。粒度—球形度关系曲线总体特征从左至右表现为波动—平滑—波动,左右两端波动段为粗颗粒滚动段和细颗粒悬浮段,其含量不足整体的5%,且在同一断面内其差异性不明显。粒度—球形度关系曲线的平滑段呈现明显的规律性,横向方向相同粒度对应的球形度从后滨至水下有逐渐变小的趋势。在开敞段断面的沉积物球形度有随粒度Φ值增大而减小的趋势,在遮蔽段断面的沉积物,表现为球形度随粒度Φ值增大先增大后减小。在开敞段断面,一般在水边线采样点位置球形度出现明显的差异,而在遮蔽段和过渡段,这种差异一般出现在滩面或水边线位置。这种差异受潮位与采样点高程的关系影响,通过分析采样点高程和最高潮位发现,在高潮位线以上和以下位置粒度—球形度关系曲线出现明显的差异。在沿岸方向,粒度—球形度关系曲线在粒度为2.5 Φ附近出现拐点,粒度小于2.5 Φ时,开敞段球形度大于遮蔽段,大于2.5 Φ时差异较小。在相同岸段相同采样特征点位置的粒度—球形度关系曲线相差不大。

        图  4  研究区沉积物粒度—粒形曲线横向分布特征

        Figure 4.  Cross⁃shore distribution of sediment grain size/shape

        图  5  研究区沉积物粒度—粒形曲线沿岸分布特征

        Figure 5.  Distributions of longshore properties of sediment grain size/shape curves

      • 通过粒度趋势分析模型计算研究区岬湾海滩沉积物输运矢量,特征距离选择最大采样点距离250 m,获得了保定湾海滩表层沉积物净输移趋势(图6a)。为了保证在该特征距离下粒度趋势分析结果能正确识别沉积物的输运模式,根据选定的特征距离所计算的沉积物输运趋势必须在通过显著性检验的前提下,才能探讨其蕴含的意义[36]。本文按照Gao et al.[8]提出的检验方法,将原站点的粒度参数随机重新分配到不同的站点生成新的数据集。随后,将产生的每个新数据集中计算得到的趋势向量长度相加后求平均,得到每个数据集的趋势向量平均长度,建立向量长度的频率分布,根据分布曲线定义99%置信区间的临界值L99,并与原数据集计算的向量长度L对比。(1)L>L99,趋势显著;(2)L<L99,趋势不显著。在第一种情况下所确定的趋势代表净沉积物输移途径具有较高可信度。临界长度L99经过10 000次粒度参数重新分配给253个采样点分析后,获得10 000个矢量长度,其频率分布如图7a,平均值为0.27,最大值为0.52,最小值为0.03,临界矢量长度L99为0.45,原数据集计算的平均向量长度L为0.94,L>L99表明这一检验方法可证明在本文的研究区内,特征距离选取250 m是合适的,所获取的沉积物粒度趋势分析结果被认为是显著有效的。

        图  6  研究区海滩沉积物净输运趋势

        Figure 6.  Net sediment transport pattern

        图  7  采样点随机分配数据集计算的矢量长度频率分布图

        Figure 7.  Frequency distribution of vector length for randomly arranged sample grids

        从粒度趋势分析结果(图6a)中可以看出,除开敞段北部岸段存在沿岸输运趋势,其余岸段输运方向均为由海向陆方向。前文结果显示从海向陆在同等粒度下球形度有增大趋势,且在同一岸段内沿岸方向的球形度差异不大。对比粒度趋势分析结果,沉积物输运趋势与球形度增大方向在绝大多岸段几乎相同。但值得注意的是,在开敞段北部的沉积物沿岸输运的结果与球形度增大方向不同。

        沉积物粒形参数可提供沉积物的输运信息,对沉积物输运趋势有一定的指示作用。河流、风和波浪驱动沉积物颗粒的输运过程中,随着颗粒输运方向逐渐变细变圆[18],球形度较高的颗粒往往输运得更远更快[37]。Camsizer-X2可对沉积物粒径自由分级,并可得到每一分级的平均粒径、平均球形度、含量和颗粒数量。对研究区沉积物按照908专项标准的粒径区间分级(11 Φ∶-0.25 Φ∶-3 Φ[38],并分别得到每一区间组分的含量、平均粒径和平均球形度。将某一点各组分的平均球形度与其周围相邻各点的沉积物相同组分的球形度作比较,计算出各组球形度增大的趋势方向的合向量,并与相邻点的全部趋势向量相加,便可得到此采样点合矢量即净输运方向,公式如下:

        S(x,y)=imjns(x,y) (2)

        式中:S(x,y)代表采样点的各个粒径区间的合矢量,jns(x,y)等于某点与第j个点在第i个粒径区间的球形度趋势矢量,n代表某一粒级的采样点的趋势矢量总和,m代表粒径分级数量。对球形度趋势矢量与相邻点的球形度趋势矢量取平均,以消除数据“噪声”,矢量平均公式如下:

        Sav(x,y)=1k+1S(x,y)+jnSt (3)

        式中:k是相邻点个数,St是相邻点的趋势向量,Sav(x,y)是去“噪声”后的平均趋势向量。长度仅表示此趋势矢量的显著性,方向为该采样点沉积物长期净输运方向。

        在计算输运趋势向量前,对球形度输运趋势计算出来的结果进行必要的显著性检验。临界长度L99经过10 000次粒形参数重新分配给253个采样点分析,获得10 000个矢量长度,其频率分布如图7b,分布接近于正态分布,略显负偏,平均值为1.15,最大值为19.96,最小值为0.08,临界矢量长度L99为19.91,原数据集计算的平均向量长度L为59.68,L>L99表明研究区的球形度趋势结果是高度显著有效的。

        使用上述球形度趋势分析模型计算研究区海滩沉积物输运矢量,获得了保定湾海滩沉积物输运趋势(图6b)。结果表明,开敞段有两个汇集中心,分别在开敞段的南部(01-12断面)和北部(13-20断面),且大致方向都为从海向陆。遮蔽段的最东部也存在一个汇集区(47-52断面),方向为沿岸向西,其余岸段输运趋势方向皆为从海向陆。通过与粒度趋势模型分析结果比较发现,大部分岸段的输运趋势方向大致相同,主要差异集中在开敞段北端和遮蔽段最东端。在开敞段波浪冲刷剧烈,海滩坡度大,冲流带(swash zone)动力条件复杂,沉积物粒度的分选沉积是动态多变的,因此,粒度趋势分析结果大多是瞬时或短时间内的运移趋势。而球形度变化主要是由长期的分选和磨蚀引起的,球形度的分布趋势可指示沉积物长期的运移结果。程武风等[26]通过分析近40年保定湾岸线以及使用MEPBAY模型分析得出研究区海岸处于稳定状态,这也与本文的粒形趋势模型分析结果相符。因此,球形度趋势分析模型结果对沉积物的长期输运趋势有较好的指示作用。

        由于该模型的数据特点,使得其具有可以计算任意粒度区间沉积物的输运趋势,在本文中分别计算了黏土、细粉砂、粗粉砂、细砂、中砂、粗砂和细砾石七组分的沉积物球形度输运趋势(图8)。结果显示,中砂和粗砂组分输运趋势为横向向陆输运,其他组分沉积物输运趋势多为沿岸输运。由于海滩地形的沿岸差异,海滩冲流带的上冲流(uprush)和回卷流(backrush)方向为斜向上和斜向下的Z字形运动,细颗粒沉积物在随上冲流和回卷流往复运动时呈现沿岸输运的趋势。细砾石粗颗粒沉积物无法被上冲流带至海滩,多集中在水边线破波处,由于海滩沿岸地形的不规则,沿岸水边处破波的频率不同,导致了细砾石的沿岸输运。沉积物的输运方向影响着海滩的稳定性,对各组分分解计算球形度输运趋势发现,不同岸段不同的组分的输运趋势不尽相同,对海滩演变和稳定性有着不同的影响。因此,球形度趋势分析模型可作为较有利力的工具解释海滩演变机制和海滩稳定性。

        图  8  研究区海滩沉积物七组分粒形趋势分析获得的沉积物净输运趋势

        Figure 8.  Net sediment transport pattern by grain shape: trend analysis for the seven components of sediments

      • 粒度粒形的分布特征在沿岸和横向方向分别受波浪和潮位的影响。保定湾岬湾海岸由于岬角的掩护作用,使得波浪在沿岸方向有明显的梯度变化,这种变化导致了沉积物在输运、磨蚀、沉积呈现不同的特征。波浪会对海滩沉积物颗粒产生磨蚀[39],磨蚀导致了沉积物颗粒圆度增加和粒度减小,但粗颗粒和细颗粒有着不同的磨损率,直到颗粒变得非常小以至于输运越过闭合深度极限,将不会返回海滩[40]。在开敞段,波浪能量较高可输送更多的大颗粒沉积物,并对大颗粒不断磨蚀使得沉积物颗粒更规则。而在遮蔽段,波浪受到岬角的掩护作用,该岸段波向线扩散,波能辐散,导致该区域沉积物的平均粒径变小,且沉积物颗粒不能充分地运动进而磨蚀不充分,导致该岸段沉积物平均球形度较小。

        海滩的冲流带是海滩沉积物输移最活跃的区域[41],因波浪上冲流覆盖和回卷流而暴露,是海滩上水动力环境较为复杂的部位。研究表明圆形的颗粒可以被输运得更远,对于球形度更大和更规则的颗粒其沉降速度更高[2021],球形度较大的沉积物颗粒可随上冲流运动至冲流带顶部,并由于惯性原因继续向前运动并快速沉积下来。对于球形度较小不规则颗粒的沉降速度较低,下落路径倾向于螺旋、倾斜、圆形或其他不确定的路径[21,42],使其在悬浮状态下停留时间更长,并被回卷流带回。冲流带位置随涨落潮的变化在海滩上移动,而海滩坡度影响着冲流带的范围。在本研究中开敞段和过渡段坡度较大,冲流带流速梯度较大,随潮位变化移动范围较小,因此,沉积物粒形在开敞段和过渡段断面横向分布有明显的空间差异。对于遮蔽段,海滩较为平坦,冲流带流速梯度较小,且范围较广,随潮位变化移动范围较广,几乎可覆盖整个海滩,因此沉积物粒形在该岸段断面横向分布的空间变化较小。

      • 球形度趋势向量方向的空间自相关性可以判断能否反映真实的沉积物输运过程。空间自相关性可以提供基于地质统计方法的变量空间结构信息。澳大利亚统计学家Moran[43]在1950年提出了Moran’s I,用来计算样本在空间中是否存在相关性的重要指标,可用来判断研究对象与邻居在空间上是否存在自相关的情况,目前已经成功应用到多个领域[4445]。Moran’s I是将位置之间的相似性描述和量化距离的函数,通过考虑数据点的空间位置,探索给定变量在空间上的自相关距离。Poizot et al.[46]通过Moran’s I检验确定了FB+(更细分选更差更正偏)和FB-(更细分选更差更负偏)两种案例反映了西班牙西南部加的斯坎波索托海滩真实的沉积物输运方向。对于Moran’s I而言,若n代表某一变量的样本综述,xi 为空间位置或空间单位i处的变量观测值,则该变量的Moran’s I值如下:

        I=ni=1nj=1nWijxi-x¯xj-x¯i=1nj=1nWiji=1n(xi-x¯)2(ij) (4)

        式中:xi 为区域i的观测值,Wij为空间权重矩阵,Moran’s I指数取值范围为-1~1,负值表示负相关,正值表示正相关,0表示各空间对象单元彼此之间相互独立。

        利用Arcmap工具箱进行Moran’s I检验来评估球形度趋势矢量方向的空间自相关性,检验结果各参数及评价标准如表1,Moran’s I值为0.86,p值为0,远小于0.01,z值得分为27.43,远大于2.58,表明粒形趋势矢量方向具有极佳的空间自相关性,可认为粒形趋势模型可反映真实的沉积物输运趋势。

        表 1  粒形趋势向方向Moran指数检验结果

        Table 1.  Moran’s index test of grain⁃shape trend vector direction

        z值p值Moran’s I值结果
        粒形输运趋势方向27.4300.86空间正相关
        检验标准>2.58<0.01>0,正相关空间正相关

        球形度趋势分析模型以多组粒度分级的球形度参数为基础,计算数据的充分性也保证了模型的准确性。同时,由于模型数据的特点可与其他粒度分析方法相结合以达到不同的研究目标。就本研究区而言,每个样品有可达到60组球形度参数用于计算粒形趋势分析模型,还可根据不同的沉积物特征进行自定义的粒度分组处理,则大幅提高了模型的适用性和准确性。球形度趋势分析模型的数据特点为与其他粒度分析方法相结合提供了可能性。近年来,粒度端元模型得到了较好的发展,从沉积物粒度整体分布中分离出不同的粒度成分[4749],用于研究沉积物的来源、动力和运移路径信息[5052]。同一端元往往指示着相同的物源和沉积物动力,以相同端元区间的粒形参数进行球形度趋势分析得到的沉积物输运趋势,可以更好地指示相同物源和沉积动力条件下沉积物的输运趋势。

      • 根据球形度所建立的粒形趋势分析模型,虽然在研究区内的计算结果很好地指示了海滩表层沉积物的输运方向,取得了较好的应用,但在其他沉积环境内的应用仍需要验证和探讨。需要注意的是,模型计算所使用的粒形参数为每一单独粒度分级区间所对应的粒形值,是该粒度区间内所有颗粒基于体积的粒形平均值。因此,粒度分级的不同对模型计算结果的稳健可能造成影响。稳定的沉积物颗粒形态其形貌特征与物源和水动力条件有关[39,53],是长时间尺度磨蚀作用下形成的。磨蚀过程受颗粒特性、动力条件、颗粒大小等因素影响,不同的粒形参数也表现出一定的差异性[35,5455]。因此,不同的粒形参数及其变化特征对沉积物输运趋势的指示也有所差异。仅以单一粒形参数单一变化特征计算输运结果可能产生模棱两可的结果,分析并结合更丰富的粒形参数及其空间变化特征建立输运趋势模型是进一步完善粒形趋势模型的方向。

        随着颗粒的增大,特别是砾石卵石颗粒,其运动过程与较小颗粒的截然不同,其往往是被动磨蚀,特别是卵石颗粒在极端天气下短时间的高强度磨蚀过程。因此,不同颗粒大小其运动模式和磨蚀方式往往不同,其粒形变化特征对输运趋势的指示作用也有所差异。特别是对于沉积物样品粒度跨度较大的沉积区域,不同的粒度区间可能存在不同的粒形变化特征指示着输运方向。因此,粒形输运趋势模型进一步发展中,除增加更丰富的粒形参数外,加入粒度区间判别项也是必不可少的。

      • (1) 研究区沉积物粒度粒形参数及粒度—球形度关系曲线特征有明显的空间分布规律。相同的粒度下,由海向陆粒形有增大趋势,沿岸方向,开敞段至遮蔽段粒形有减小趋势(小于2.5 Φ粒度范围),相同岸段内沿岸方向粒形差异小。

        (2)粒形趋势分析模型结果揭示了研究区岬湾海滩沉积物沿球形度增大方向输运的趋势。该模型结果反映了研究区海滩沉积物的运移趋势,并可分别计算各组分的输运趋势,为解释海滩演变机制和分析海滩稳定性提供了新的理论依据和支持。

    参考文献 (55)

    目录

      /

      返回文章
      返回