高级搜索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体沥青形态、成因以及应用研究进展

李长志 郭佩 豆霜 文华国

李长志, 郭佩, 豆霜, 文华国. 固体沥青形态、成因以及应用研究进展[J]. 沉积学报, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
引用本文: 李长志, 郭佩, 豆霜, 文华国. 固体沥青形态、成因以及应用研究进展[J]. 沉积学报, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
LI ChangZhi, GUO Pei, DOU Shuang, WEN HuaGuo. Research Progress on Solid Bitumen Morphology, Genesis, and Application[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
Citation: LI ChangZhi, GUO Pei, DOU Shuang, WEN HuaGuo. Research Progress on Solid Bitumen Morphology, Genesis, and Application[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048

固体沥青形态、成因以及应用研究进展

doi: 10.14027/j.issn.1000-0550.2023.048
基金项目: 

国家自然科学基金项目 42002116

详细信息
    作者简介:

    李长志,男,1991年出生,博士,讲师,油气成藏地质学,E-mail: [email protected]

    通讯作者:

    文华国,男,博士,教授,储层沉积学,E-mail: [email protected]

Research Progress on Solid Bitumen Morphology, Genesis, and Application

Funds: 

National Natural Science Foundation of China 42002116

  • 摘要: 目的 固体沥青广泛分布于全球各大含油气盆地中,在油气勘探领域具有广阔的应用前景,特别对深层—超深层碳酸盐岩油气勘探尤为重要。然而,在固体沥青具体应用过程中,也存在固体沥青反射率难以确定、油气源对比参数适用性受成因约束等诸多问题,若不妥善处理,可能会得出错误的成果认识。因此,需要对固体沥青在油气勘探中的应用进行有效的归纳总结。 方法 此次研究结合广泛的文献调研,首先对与应用研究密切相关的固体沥青形态学特征和成因类型进行分析,然后总结固体沥青在油气勘探中的诸多应用并指出其中的优势与不足。 结果 固体沥青发育复杂多样的光性结构,主要受形成环境、母质成分等因素控制;其同样具有复杂多样的超显微形态,可能受运移和天然气的生成及逸散等因素控制。固体沥青具有多种成因类型,在有机元素组成、碳和硫同位素值以及生物标志化合物组成等方面差异显著;可用于指示油气的生成和运聚、表征热演化成熟度以及追踪油气来源等,但由于不同成因固体沥青油气源对比参数的适用性差异很大,应用时需判断其成因类型。 结论 该研究为固体沥青的有效应用提供了有力的支撑,对深层—超深层油气勘探具有重要的指导作用。
  • 图  1  固体沥青的宏观产状

    (a) solid bitumen filling dissolved caves[29]; (b) solid bitumen filling stylolite; (c) solid bitumen filling fractures; (d) solid bitumen filling the dissolved caves at the edge[39]; (e,f) solid bitumen filling the dissolved caves in the middle[3940]

    Figure  1.  Macroscopic occurrence of solid bitumen

    Fig.1

    图  2  固体沥青的微观产状

    (a) solid bitumen filling the pores at the edge[41]; (b) solid bitumen filling the pores completely; (c) solid bitumen filling the stylolite completely[40]; (d) solid bitumen and calcite filling the fractures; (e, f) solid bitumen with different fluorescence[42], e. plane⁃polarized light, f. fluorescence

    Figure  2.  Microscopic occurrence of solid bitumen

    Fig.2

    图  3  固体沥青的不同光性结构[10,31,43]

    (a) isotropic optical structure, oil⁃immersion reflected light; (b) fine⁃grained, medium/coarse⁃grained and coarse flow mosaic optical structures, oil⁃immersion cross⁃polarized incident light; (c) coarse⁃grained mosaic optical structure, oil⁃immersion cross⁃polarized incident light; (d) fine⁃grained, medium⁃grained, coarse flow mosaic and domain optical structures, oil⁃immersion cross⁃polarized incident light; (e) domain and fibrous optical structures, oil⁃immersion plane⁃polarized incident light; and (f) fibrous optical structure, oil⁃immersion cross⁃polarized incident light; Is. isotropic; FM. fine⁃grained mosaic; MM. medium⁃grained mosaic; CM. coarse⁃grained mosaic; CFM. coarse flow mosaic; Do. domain; Fi. fibrous; Dol. dolomite

    Figure  3.  Optical structures of solid bitumen[10,31,43]

    Fig.3

    图  4  不同超显微形态固体沥青[4344]

    (a) massive solid bitumen; (b) massive solid bitumen (red arrow) and finger⁃like solid bitumen (yellow arrow); (c) finger⁃like solid bitumen; (d) vesicular solid bitumen; (e) warty solid bitumen; (f) sheet⁃like solid bitumen (red arrow) and thin⁃skinned globular solid bitumen (yellow arrow); (g) thin⁃skinned globular solid bitumen; (h) botryoidalis solid bitumen; and (i) vermicular solid bitumen

    Figure  4.  Ultramicroscopic morphology of solid bitumen[4344]

    Fig.4

    图  5  固体沥青常见的成因类型

    Figure  5.  Common genetic types of solid bitumen

    图  6  Woodford页岩中后油固体沥青连接成网以及发育纳米级孔隙[84]

    (a,b) post⁃oil solid bitumen connected into a network; (c,d) post⁃oil solid bitumen developing nano⁃scale pores

    Figure  6.  Post⁃oil solid bitumen linked into a network with developed nano⁃scale pores in Woodford shales[84]

    Fig.6

    图  7  不同热演化成熟度固体沥青的激光拉曼光谱[106]

    Figure  7.  Laser Raman spectra of solid bitumen with different thermal evolution maturity[106]

  • [1] Hwang R J, Teerman S C, Carlson R M. Geochemical comparison of reservoir solid bitumens with diverse origins[J]. Organic Geochemistry, 1998, 29(1/2/3): 505-517.
    [2] Killops S, Killops V. Introduction to organic geochemistry[M]. 2nd ed. Malden: Blackwell Publishing, 2005: 1-406.
    [3] Hunt J M. Petroleum geochemistry and geology[M]. 2nd ed. New York: W. H. Freeman, 1996: 1-743.
    [4] Waliczek M, Machowski G, Więcław D, et al. Properties of solid bitumen and other organic matter from Oligocene shales of the Fore-Magura Unit in Polish Outer Carpathians: Microscopic and geochemical approach[J]. International Journal of Coal Geology, 2019, 210: 103206.
    [5] Suárez-Ruiz I, Juliao T, Rodrigues S, et al. Optical parameters and microstructural properties of solid bitumens of high reflectance (Impsonites). Reflections on their use as an indicator of organic maturity[J]. International Journal of Coal Geology, 2020, 229: 103570.
    [6] Chen Z H, Yang Y M, Wang T G, et al. Dibenzothiophenes in solid bitumens: Use of molecular markers to trace paleo-oil filling orientations in the lower Cambrian reservoir of the Moxi-Gaoshiti Bulge, Sichuan Basin, southern China[J]. Organic Geochemistry, 2017, 108: 94-112.
    [7] 王晔,邱楠生,马中良,等. 固体沥青反射率与镜质体反射率的等效关系评价[J]. 中国矿业大学学报,2020,49(3):563-575.

    Wang Ye, Qiu Nansheng, Ma Zhongliang, et al. Evaluation of equivalent relationship between vitrinite reflectance and solid bitumen reflectance[J]. Journal of China University of Mining & Technology, 2020, 49(3): 563-575.
    [8] 肖贤明,周秦,程鹏,等. 高—过成熟海相页岩中矿物—有机质复合体(MOA)的显微激光拉曼光谱特征作为成熟度指标的意义[J]. 中国科学(D辑):地球科学,2020,50(9):1228-1241.

    Xiao Xianming, Zhou Qin, Cheng Peng, et al. Thermal maturation as revealed by micro-Raman spectroscopy of mineral-organic aggregation (MOA) in marine shales with high and over maturities[J]. Science China (Seri. D): Earth Sciences, 2020, 50(9): 1228-1241.
    [9] Rimmer S M, Crelling J C, Yoksoulian L E. An occurrence of coked bitumen, Raton Formation, Purgatoire River Valley, Colorado, U.S.A.[J]. International Journal of Coal Geology, 2015, 141-142: 63-73.
    [10] Stasiuk L D. The origin of pyrobitumens in Upper Devonian Leduc Formation gas reservoirs, Alberta, Canada: An optical and EDS study of oil to gas transformation[J]. Marine and Petroleum Geology, 1997, 14(7/8): 915-929.
    [11] Alkhafaji M W, Connan J, Engel M H, et al. Origin, biodegradation, and water washing of bitumen from the Mishraq sulfur mine, northern Iraq[J]. Marine and Petroleum Geology, 2021, 124: 104786.
    [12] Misch D, Gross D, Hawranek G, et al. Solid bitumen in shales: Petrographic characteristics and implications for reservoir characte-rization[J]. International Journal of Coal Geology, 2019, 205: 14-31.
    [13] 田兴旺,胡国艺,李伟,等. 四川盆地乐山—龙女寺古隆起地区震旦系储层沥青地球化学特征及意义[J]. 天然气地球科学,2013,24(5):982-990.

    Tian Xingwang, Hu Guoyi, Li Wei, et al. Geochemical characteristics and significance of Sinian reservoir bitumen in Leshan-Longnvsi paleo-uplift area, Sichuan Basin[J]. Natural Gas Geoscience, 2013, 24(5): 982-990.
    [14] 黄文明,徐邱康,刘树根,等. 中国海相层系油气成藏过程与储层沥青耦合关系:以四川盆地为例[J]. 地质科技情报,2015,34(6):159-168.

    Huang Wenming, Xu Qiukang, Liu Shugen, et al. Coupling relationship between oil & gas accumulation process and reservoir bitumen of marine system: Taking Sichuan Basin as an example[J]. Geological Science and Technology Information, 2015, 34(6): 159-168.
    [15] 刘洛夫,赵建章,张水昌,等. 塔里木盆地志留系沥青砂岩的成因类型及特征[J]. 石油学报,2000,21(6):12-17.

    Liu Luofu, Zhao Jianzhang, Zhang Shuichang, et al. Genetic types and characteristics of the Silurian asphaltic sandstones in Tarim Basin[J]. Acta Petrolei Sinica, 2000, 21(6): 12-17.
    [16] 陈强路,范明,尤东华. 塔里木盆地志留系沥青砂岩储集性非常规评价[J]. 石油学报,2006,27(1):30-33.

    Chen Qianglu, Fan Ming, You Donghua. Non-traditional method for evaluating physical property of Silurian bitumen sandstone reservoirs in Tarim Basin[J]. Acta Petrolei Sinica, 2006, 27(1): 30-33.
    [17] 路俊刚,陈世加,王绪龙,等. 准东三台—北三台地区储层沥青和稠油特征与成因分析[J]. 中国石油大学学报(自然科学版),2011,35(5):27-31,50.

    Lu Jungang, Chen Shijia, Wang Xulong, et al. Characteristics and origin analysis of viscous oil and reservoir bitumen in Santai-Beisantai area[J]. Journal of China University of Petroleum, 2011, 35(5): 27-31, 50.
    [18] 陈哲龙,柳广弟,曹正林,等. 储层沥青成因及其石油地质意义:以准噶尔盆地玛湖凹陷百口泉组为例[J]. 中国矿业大学学报,2018,47(2):391-399.

    Chen Zhelong, Liu Guangdi, Cao Zhenglin, et al. Origin of solid bitumen and its significance to petroleum geology: A case study of Baikouquan Formation in Mahu Sag of Junggar Basin[J]. Journal of China University of Mining & Technology, 2018, 47(2): 391-399.
    [19] 张春林,孙粉锦,刘锐娥,等. 鄂尔多斯盆地南部奥陶系沥青及古油藏生气潜力[J]. 石油勘探与开发,2010,37(6):668-673.

    Zhang Chunlin, Sun Fenjin, Liu Rui'e, et al. Bitumen and hydrocarbon generation potential of paleo-reservoirs in the Ordovician, south Ordos Basin[J]. Petroleum Exploration and Develop-ment, 2010, 37(6): 668-673.
    [20] 黄军平,林俊峰,张雷,等. 鄂尔多斯盆地下古生界—中元古界储层固体沥青地质特征及油气勘探意义[J]. 河南理工大学学报(自然科学版),2021,40(4):48-58.

    Huang Junping, Lin Junfeng, Zhang Lei, et al. Geological characteristics and exploration significance of reservoir solid bitumen in the Lower Paleozoic-Middle Proterozoic in Ordos Basin[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(4): 48-58.
    [21] Gonçalves P A, Filho J G M, da Silva F S, et al. Solid bitumen occurrences in the Arruda sub-basin (Lusitanian Basin, Portugal): Petrographic features[J]. International Journal of Coal Geology, 2014, 131: 239-249.
    [22] Wang G W, Li P P, Hao F, et al. Impact of sedimentology, diagenesis, and solid bitumen on the development of a tight gas grainstone reservoir in the Feixianguan Formation, Jiannan area, China: Implications for gas exploration in tight carbonate reservoirs[J]. Marine and Petroleum Geology, 2015, 64: 250-265.
    [23] Liu Y K, Xiong Y Q, Li Y, et al. Effect of thermal maturation on chemical structure and nanomechanical properties of solid bitumen[J]. Marine and Petroleum Geology, 2018, 92: 780-793.
    [24] Mastalerz M, Drobniak A, Stankiewicz A B. Origin, properties, and implications of solid bitumen in source-rock reservoirs: A review[J]. International Journal of Coal Geology, 2018, 195: 14-36.
    [25] Li Y, Chen S J, Wang Y X, et al. Relationships between hydrocarbon evolution and the geochemistry of solid bitumen in the Guanwushan Formation, NW Sichuan Basin[J]. Marine and Petroleum Geology, 2020, 111: 116-134.
    [26] Wu L L, Liao Y H, Fang Y X, et al. The study on the source of the oil seeps and bitumens in the Tianjingshan structure of the northern Longmen Mountain structure of Sichuan Basin, China[J]. Marine and Petroleum Geology, 2012, 37(1): 147-161.
    [27] Cheng B, Wang T G, Chen Z H, et al. Biodegradation and possible source of Silurian and Carboniferous reservoir bitumens from the Halahatang sub-depression, Tarim Basin, NW China[J]. Marine and Petroleum Geology, 2016, 78: 236-246.
    [28] Cai C F, Xiang L, Yuan Y Y, et al. Sulfur and carbon isotopic compositions of the Permian to Triassic TSR and non-TSR altered solid bitumen and its parent source rock in NE Sichuan Basin[J]. Organic Geochemistry, 2017, 105: 1-12.
    [29] Zhu L Q, Liu G D, Song Z Z, et al. Reservoir solid bitumen-source rock correlation using the trace and rare earth elements:Implications for identifying the natural gas source of the Ediacaran-lower Cambrian reservoirs, central Sichuan Basin[J]. Marine and Petroleum Geology, 2022, 137: 105499.
    [30] Landis C R, Castaño J R. Maturation and bulk chemical properties of a suite of solid hydrocarbons[J]. Organic Geochemistry, 1995, 22(1): 137-149.
    [31] 左兆喜,曹剑,胡文瑄,等. 高演化有机质的芳烃成熟度表征:基于焦沥青反射率和拉曼参数的优选[J]. 中国科学(D辑):地球科学,2022,52(12):2454-2478.

    Zuo Zhaoxi, Cao Jian, Hu Wenxuan, et al. Characterizing the maturity of highly evolved organic matter based on aromatic hydrocarbons and optimization with pyrobitumen reflectance and Raman spectral parameters[J]. Science China (Seri. D): Earth Sciences, 2022, 52(12): 2454-2478.
    [32] Bertrand R. Standardization of solid bitumen reflectance to vitrinite in some Paleozoic sequences of Canada[J]. Energy Sources, 1993, 15(2): 269-287.
    [33] Bertrand R, Malo M. Source rock analysis, thermal maturation and hydrocarbon generation in Siluro-Devonian rocks of the Gaspé Belt Basin, Canada[J]. Bulletin of Canadian Petroleum Geology, 2001, 49(2): 238-261.
    [34] Henry D G, Jarvis I, Gillmore G, et al. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals[J]. International Journal of Coal Geology, 2019, 203: 87-98.
    [35] 刘强,柳少波,鲁雪松,等. 拉曼光谱在油气地质应用中的研究进展[J]. 光谱学与光谱分析,2022,42(9):2679-2688.

    Liu Qiang, Liu Shaobo, Lu Xuesong, et al. Research progress in the application of Raman spectroscopy in petroleum geology[J]. Spectroscopy and Spectral Analysis, 2022, 42(9): 2679-2688.
    [36] 王飞宇,师玉雷,曾花森,等. 利用油包裹体丰度识别古油藏和限定成藏方式[J]. 矿物岩石地球化学通报,2006,25(1):12-18.

    Wang Feiyu, Shi Yulei, Zeng Huasen, et al. To identify paleo-oil reservoir and to constrain petroleum charging model using the abundance of oil inclusions[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006, 25(1): 12-18.
    [37] Li P P, Hao F, Zhang B Q, et al. Heterogeneous distribution of pyrobitumen attributable to oil cracking and its effect on carbonate reservoirs: Feixianguan Formation in the Jiannan gas field, China[J]. AAPG Bulletin, 2015, 99(4): 763-789.
    [38] Li P P, Li T, Zou H Y, et al. Heterogeneous distribution and potential significance of solid bitumen in paleo-oil reservoirs: Evidence from oil cracking experiments and geological observations[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109340.
    [39] Zhao B S, Li R X, Qin X L, et al. Biomarkers and Re-Os geochronology of solid bitumen in the Beiba dome, northern Sichuan Basin, China: Implications for solid bitumen origin and petroleum system evolution[J]. Marine and Petroleum Geology, 2021, 126: 104916.
    [40] Yao L P, Zhong N N, Khan I, et al. Comparison of in-source solid bitumen with migrated solid bitumen from Ediacaran-Cambrian rocks in the Upper Yangtze region, China[J]. International Journal of Coal Geology, 2021, 240: 103748.
    [41] 余新亚,李平平,邹华耀,等. 川东北长兴组:飞仙关组古原油成藏的孔隙度门限[J]. 地质学报,2014,88(11):2131-2140.

    Yu Xinya, Li Pingping, Zou Huayao, et al. Porosity threshold for paleo-oil accumulation of Changxing: Feixianguan Formations in the northeastern Sichuan Basin[J]. Acta Geologica Sinica, 2014, 88(11): 2131-2140.
    [42] Shi C H, Cao J, Tan X C, et al. Discovery of oil bitumen co-existing with solid bitumen in the lower Cambrian Longwangmiao giant gas reservoir, Sichuan Basin, southwestern China: Implications for hydrocarbon accumulation process[J]. Organic Geochemistry, 2017, 108: 61-81.
    [43] Gao P, Liu G D, Lash G G, et al. Occurrences and origin of reservoir solid bitumen in Sinian Dengying Formation dolomites of the Sichuan Basin, SW China[J]. International Journal of Coal Geology, 2018, 200: 135-152.
    [44] 李胜勇,傅恒,李仲东,等. 川东北地区长兴组—飞仙关组固体沥青的形貌特征与成因分析[J]. 沉积与特提斯地质,2011,31(1):72-79.

    Li Shengyong, Fu Heng, Li Zhongdong, et al. Morphology and genesis of the solid bitumen from the Changxing Formation-Feixianguan Formation in northeastern Sichuan[J]. Sedimentary Geology and Tethyan Geology, 2011, 31(1): 72-79.
    [45] Ragan S, Marsh H. Carbonization and liquid-crystal (mesophase) development. 22. Micro-strength and optical textures of cokes from coal-pitch co-carbonizations[J]. Fuel, 1981, 60(6): 522-528.
    [46] Nandi B N, Belinko K, Ciavaglia L A, et al. Formation of coke during thermal hydrocracking of Athabasca bitumen[J]. Fuel, 1978, 57(5): 265-268.
    [47] Brooks J D, Taylor G H. Formation of graphitizing carbons from the liquid phase[J]. Nature, 1965, 206(4985): 697-699.
    [48] White J L. Mesophase mechanisms in the formation of the microstructure of petroleum coke[M]//Deviney M L, O’Grady T M. Petroleum derived carbons. Washington: American Chemical Society, 1976: 282-314.
    [49] Khavari-Khorosani G, Murchison D G. Thermally metamorphosed bitumen from Windy Knoll, Derbyshire, England[J]. Chemical Geology, 1978, 22: 91-105.
    [50] Creaney S, Jones J M, Holliday D W, et al. The occurrence of bitumen in the Great Limestone around Matfen, Northumberland–its characterisation and possible genesis[J]. Proceedings of the Yorkshire Geological Society, 1980, 43(1): 69-79.
    [51] Goodarzi F, Stasiuk L D. Thermal alteration of gilsonite due to bushfire, an example from southwest Iran[J]. International Journal of Coal Geology, 1991, 17(3/4): 333-342.
    [52] Wilson N S F. Organic petrology, chemical composition, and reflectance of pyrobitumen from the El Soldado Cu deposit, Chile[J]. International Journal of Coal Geology, 2000, 43(1/2/3/4): 53-82.
    [53] Zhang P W, Liu G D, Cai C F, et al. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the central Sichuan Basin, SW China[J]. Precambrian Research, 2019, 321: 277-302.
    [54] Rahman M W, Rimmer S M, Rowe H D. The impact of rapid heating by intrusion on the geochemistry and petrography of coals and organic-rich shales in the Illinois Basin[J]. International Journal of Coal Geology, 2018, 187: 45-53.
    [55] Liu S G, Li Z Q, Deng B, et al. Occurrence morphology of bitumen in Dengying Formation deep and ultra-deep carbonate reservoirs of the Sichuan Basin and its indicating significance to oil and gas reservoirs[J]. Natural Gas Industry B, 2022, 9(1): 73-83.
    [56] 李勇,陈世加,尹相东,等. 储层中固体沥青研究现状、地质意义及其发展趋势[J]. 吉林大学学报(地球科学版),2020,50(3):732-746.

    Li Yong, Chen Shijia, Yin Xiangdong, et al. Research status, geological significance and development trend of solid bitumen in reservoirs[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(3): 732-746.
    [57] Huc A Y, Nederlof P, Debarre R, et al. Pyrobitumen occurrence and formation in a Cambro-Ordovician sandstone reservoir, Fahud Salt Basin, North Oman[J]. Chemical Geology, 2000, 168(1/2): 99-112.
    [58] Schoenherr J, Littke R, Urai J L, et al. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry, 2007, 38(8): 1293-1318.
    [59] Horsfield B, Schenk H J, Mills N, et al. An investigation of the in-reservoir conversion of oil to gas: Compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J]. Organic Geochemistry, 1992, 19(1/2/3): 191-204.
    [60] Dahl J E, Moldowan J M, Peters K E, et al. Diamondoid hydrocarbons as indicators of natural oil cracking[J]. Nature, 1999, 399(6731): 54-57.
    [61] Isaksen G H. Central North Sea hydrocarbon systems: Generation, migration, entrapment, and thermal degradation of oil and gas[J]. AAPG Bulletin, 2004, 88(11): 1545-1572.
    [62] Kelemen S R, Walters C C, Kwiatek P J, et al. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration[J]. Organic Geochemistry, 2008, 39(8): 1137-1143.
    [63] Kelemen S R, Walters C C, Kwiatek P J, et al. Characterization of solid bitumens originating from thermal chemical alteration and thermochemical sulfate reduction[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5305-5332.
    [64] Cai C F, Li K K, Zhu Y M, et al. TSR origin of sulfur in Permian and Triassic reservoir bitumen, east Sichuan Basin, China[J]. Organic Geochemistry, 2010, 41(9): 871-878.
    [65] Blanc P, Connan J. Preservation, degradation, and destruction of trapped oil[C]//Magoon L B, Dow W G. The petroleum system-from source to trap. Tulsa: American Association of Petroleum Geologists, 1994, 60: 237-247.
    [66] King H E, Walters C C, Horn W C, et al. Sulfur isotope analysis of bitumen and pyrite associated with thermal sulfate reduction in reservoir carbonates at the Big Piney-La Barge production complex[J]. Geochimica et Cosmochimica Acta, 2014, 134: 210-220.
    [67] Manzano B K, Fowler M G, Machel H G. The influence of thermochemical sulphate reduction on hydrocarbon composition in Nisku reservoirs, Brazeau river area, Alberta, Canada[J]. Organic Geochemistry, 1997, 27(7/8): 507-521.
    [68] Powell T G, Macqueen R W. Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point, Canada[J]. Science, 1984, 224(4644): 63-66.
    [69] Machel H G, Krouse H R, Sassen R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction[J]. Applied Geochemistry, 1995, 10(4): 373-389.
    [70] Sachsenhofer R F, Gratzer R, Tschelaut W, et al. Characterisation of non-producible oil in Eocene reservoir sandstones (Bad Hall Nord field, Alpine Foreland Basin, Austria)[J]. Marine and Petroleum Geology, 2006, 23(1): 1-15.
    [71] Shalaby M R, Hakimi M H, Abdullah W H. Geochemical characterization of solid bitumen (migrabitumen) in the Jurassic sandstone reservoir of the Tut field, Shushan Basin, northern western desert of Egypt[J]. International Journal of Coal Geology, 2012, 100: 26-39.
    [72] Wilhelms A, Larter S R. Origin of tar mats in petroleum reservoirs. Part II: Formation mechanisms for tar mats[J]. Marine and Petroleum Geology, 1994, 11(4): 442-456.
    [73] Lomando A J. The influence of solid reservoir bitumen on reservoir quality[J]. AAPG Bulletin, 1992, 76(8): 1137-1152.
    [74] Rogers M A, McAlary J D, Bailey N J L. Significance of reservoir bitumens to thermal-maturation studies, western Canada Basin[J]. AAPG Bulletin, 1974, 58(9): 1806-1824.
    [75] Jacob H. Nomenclature, classification, characterization, and genesis of natural solid bitumen (migrabitumen)[M]//Parnell J, Kucha H, Landais P. Bitumens in ore deposits. Berlin Heidelberg: Springer, 1993: 11-27.
    [76] Volkman J K, Alexander R, Kagi R I, et al. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow sub-basin of western Australia[J]. Organic Geochemistry, 1984, 6: 619-632.
    [77] Miiller D E, Holba A G, Hughes W B. Effects of biodegradation on crude oils[M]//Meyer R F. Exploration for heavy crude oil and natural bitumen. Tulsa: American Association of Petroleum Geologists, 1987: 233-241.
    [78] Peters K E, Walters C C, Moldowan J M. The biomarker guide, volume 2, biomarkers and isotopes in petroleum exploration and earth history[M]. 2nd ed. New York: Cambridge University Press, 2005: 608-647.
    [79] Curiale J A. Origin of solid bitumens, with emphasis on biological marker results[J]. Organic Geochemistry, 1986, 10(1/2/3): 559-580.
    [80] Head I M, Jones D M, Larter S R. Biological activity in the deep subsurface and the origin of heavy oil[J]. Nature, 2003, 426(6964): 344-352.
    [81] Curiale J A, Harrison W E. Correlation of oil and asphaltite in Ouachita Mountain region of Oklahoma: Geologic notes[J]. AAPG Bulletin, 1981, 65(11): 2426-2432.
    [82] Huang H P, Li J. Molecular composition assessment of biodegradation influence at extreme levels:A case study from oilsand bitumen in the Junggar Basin, NW China[J]. Organic Geochemistry, 2017, 103: 31-42.
    [83] Xiao X M, Wang F, Wilkins R W T, et al. Origin and gas potential of pyrobitumen in the Upper Proterozoic strata from the middle paleo-uplift of the Sichuan Basin, China[J]. International Journal of Coal Geology, 2007, 70(1/2/3): 264-276.
    [84] Cardott B J, Landis C R, Curtis M E. Post-oil solid bitumen network in the Woodford Shale, USA:A potential primary migration pathway[J]. International Journal of Coal Geology, 2015, 139: 106-113.
    [85] Zhou Q, Xiao X M, Pan L, et al. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen[J]. International Journal of Coal Geology, 2014, 121: 19-25.
    [86] Lohr C D, Hackley P C. Relating Tmax and hydrogen index to vitrinite and solid bitumen reflectance in hydrous pyrolysis residues: Comparisons to natural thermal indices[J]. International Journal of Coal Geology, 2021, 242: 103768.
    [87] Gao G, Ren J L, Yang S R, et al. Characteristics and origin of solid bitumen in glutenites: A case study from the Baikouquan Formation reservoirs of the Mahu Sag in the Junggar Basin, China[J]. Energy & Fuels, 2017, 31(12): 13179-13189.
    [88] Cheng B, Chen Z H, Chen T, et al. Biomarker signatures of the Ediacaran–early Cambrian origin petroleum from the central Sichuan Basin, South China: Implications for source rock characte-ristics[J]. Marine and Petroleum Geology, 2018, 96: 577-590.
    [89] Shi C H, Cao J, Luo B, et al. Major elements trace hydrocarbon sources in over-mature petroleum systems: Insights from the Sinian Sichuan Basin, China[J]. Precambrian Research, 2020, 343: 105726.
    [90] 吴小奇,陈迎宾,翟常博,等. 川西坳陷中三叠统雷口坡组沥青地球化学特征及气源示踪[J]. 石油与天然气地质,2022,43(2):407-418.

    Wu Xiaoqi, Chen Yingbin, Zhai Changbo, et al. Geochemical characteristics of bitumen and tracing of gas source in the Middle Triassic Leikoupo Formation, western Sichuan Depression[J]. Oil & Gas Geology, 2022, 43(2): 407-418.
    [91] 柳广第. 石油地质学[M]. 4版. 北京:石油工业出版社,2009:252-258.

    Liu Guangdi. Petroleum geology[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 252-258.
    [92] Löhr S C, Baruch E T, Hall P A, et al. Is organic pore development in gas shales influenced by the primary porosity and structure of thermally immature organic matter?[J]. Organic Geochemistry, 2015, 87: 119-132.
    [93] Ungerer P, Behar E, Discamps D. Tentative calculation of the overall volume expansion of organic matter during hydrocarbon genesis from geochemistry data. Implications for primary migration[M]//Bjoröy M. Advances in organic geochemistry. Chichester: John Wiley, 1981: 129-135.
    [94] Lewan M D. Petrographic study of primary petroleum migration in the Woodford Shale and related rock units[C]//Proceedings of the IFP exploration research conference. Paris: Technip, 1987: 113-130.
    [95] Curtis M E, Cardott B J, Sondergeld C H, et al. Development of organic porosity in the Woodford Shale with increasing thermal maturity[J]. International Journal of Coal Geology, 2012, 103: 26-31.
    [96] Reed R M, Loucks R, Milliken K L. Heterogeneity of shape and microscale spatial distribution in organic-matter-hosted pores of gas shales[C]//Proceedings of 2012 AAPG annual convention and exhibition. Long Beach: AAPG, 2012: 1236631.
    [97] Lisk M, O’Brien G W, Eadington P J. Quantitative evaluation of the oil-leg potential in the Oliver gas field, Timor Sea, Australia[J]. AAPG Bulletin, 2002, 86(9): 1531-1542.
    [98] Liu K Y, Eadington P, Middleton H, et al. Applying quantitative fluorescence techniques to investigate petroleum charge history of sedimentary basins in Australia and Papuan New Guinea[J]. Journal of Petroleum Science and Engineering, 2007, 57(1/2): 139-151.
    [99] Tissot B P, Welte D H. Petroleum formation and occurrence[M]. 2nd ed. Berlin: Springer-Verlag Press, 1984.
    [100] 崔洁珺. 海相烃源岩镜状体反射率测定方法在塔东地区的应用[J]. 大庆石油地质与开发,2016,35(6):33-36.

    Cui Jiejun. Application of the vitrinite-like maceral reflectance measuring method for the marine hydrocarbon source rocks in east Tarim[J]. Petroleum Geology and Oilfield Development in Daqing, 2016, 35(6): 33-36.
    [101] Jacob H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“migrabitumen”)[J]. International Journal of Coal Geology, 1989, 11(1): 65-79.
    [102] Valentine B J, Hackley P C, Enomoto C B, et al. Reprint of “Organic petrology of the Aptian-age section in the downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and preliminary implications for thermal maturation history”[J]. International Journal of Coal Geology, 2014, 136: 38-51.
    [103] Wei L, Wang Y Z, Mastalerz M. Comparative optical properties of macerals and statistical evaluation of mis-identification of vitrinite and solid bitumen from early mature Middle Devonian-Lower Mississippian New Albany Shale: Implications for thermal maturity assessment[J]. International Journal of Coal Geology, 2016, 168: 222-236.
    [104] Petersen H I, Schovsbo N H, Nielsen A T. Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance[J]. International Journal of Coal Geology, 2013, 114: 1-18.
    [105] Kus J, Khanaqa P, Mohialdeen I M J, et al. Solid bitumen, bituminite and thermal maturity of the Upper Jurassic-Lower Cretaceous Chia Gara Formation, Kirkuk oil field, Zagros Fold Belt, Kurdistan, Iraq[J]. International Journal of Coal Geology, 2016, 165: 28-48.
    [106] 王茂林,肖贤明,魏强,等. 页岩中固体沥青拉曼光谱参数作为成熟度指标的意义[J]. 天然气地球科学,2015,26(9):1712-1718.

    Wang Maolin, Xiao Xianming, Wei Qiang, et al. Thermal maturation of solid bitumen in shale as revealed by Raman spectroscopy[J]. Natural Gas Geoscience, 2015, 26(9): 1712-1718.
    [107] Henry D G, Jarvis I, Gillmore G, et al. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology[J]. Earth-Science Reviews, 2019, 198: 102936.
    [108] Zhang Y L, Li Z S. Raman spectroscopic study of chemical structure and thermal maturity of vitrinite from a suite of Australia coals[J]. Fuel, 2019, 241: 188-198.
    [109] 刘德汉,肖贤明,田辉,等. 固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用[J]. 科学通报,2013,58(13):1228-1241.

    Liu Dehan, Xiao Xianming, Tian Hui, et al. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. China Science Bulletin, 2013, 58(13): 1228-1241.
    [110] 郝彬,胡素云,黄士鹏,等. 四川盆地磨溪地区龙王庙组储层沥青的地球化学特征及其意义[J]. 现代地质,2016,30(3):614-626.

    Hao Bin, Hu Suyun, Huang Shipeng, et al. Geochemical characteristics and its significance of reservoir bitumen of Longwangmiao Formation in Moxi area, Sichuan Basin[J]. Geoscience, 2016, 30(3): 614-626.
    [111] Chen Z H, Simoneit B R T, Wang T G, et al. Molecular markers, carbon isotopes, and rare earth elements of highly mature reservoir pyrobitumens from Sichuan Basin, southwestern China: Implications for PreCambrian-lower Cambrian petroleum systems[J]. Precambrian Research, 2018, 317: 33-56.
    [112] Sackett W M. Carbon and hydrogen isotope effects during the thermocatalytic production of hydrocarbons in laboratory simulation experiments[J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 571-580.
    [113] Peters K E, Rohrback B G, Kaplan I R. Carbon and hydrogen stable isotope variations in kerogen during laboratory-simulated thermal maturation[J]. AAPG Bulletin, 1981, 65(3): 501-508.
    [114] Xiong Y Q, Jiang W M, Wang X T, et al. Formation and evolution of solid bitumen during oil cracking[J]. Marine and Petroleum Geology, 2016, 78: 70-75.
    [115] Fang X Y, Geng A S, Liang X, et al. Comparison of the Ediacaran and Cambrian petroleum systems in the Tianjingshan and the Micangshan uplifts, northern Sichuan Basin, China[J]. Marine and Petroleum Geology, 2022, 145: 105876.
    [116] Hao F, Zhou X H, Zhu Y M, et al. Mechanisms of petroleum accumulation in the Bozhong sub-basin, Bohai Bay Basin, China. Part 1: Origin and occurrence of crude oils[J]. Marine and Petroleum Geology, 2009, 26(8): 1528-1542.
    [117] Hao F, Zhou X H, Zhu Y M, et al. Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China[J]. Organic Geochemistry, 2011, 42(4): 323-339.
    [118] Wang Q, Hao F, Xu C G, et al. Geochemical characterization of QHD29 oils on the eastern margin of Shijiutuo uplift, Bohai Sea, China: Insights from biomarker and stable carbon isotope analysis[J]. Marine and Petroleum Geology, 2015, 64: 266-275.
    [119] Li C Z, Xu F H, Huang X B, et al. Migration directions of crude oils from multiple source rock intervals based on biomarkers: A case study of Neogene reservoirs in the Bodong Sag, Bohai Bay Basin[J]. Energy Reports, 2022, 8: 8151-8164.
    [120] 施春华. 四川盆地震旦系—下寒武统大气藏高演化烃源对比无机地球化学研究[D]. 南京:南京大学,2017:3-5.

    Shi Chunhua. Applying inorganic geochemical approaches to conduct hydrocarbon source correlation under post- to over-mature conditions: A case in the Sinian and the low Cambrian giant gas accumulation, Sichuan Basin, southwestern China[D]. Nanjing: Nanjing University, 2017: 3-5.
    [121] Lewan M D. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 1984, 48(11): 2231-2238.
    [122] Kuznetsova A, Kuznetsov P, Foght J M, et al. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage[J]. Science of the Total Environment, 2016, 571: 699-710.
    [123] Selby D, Creaser R A. Direct radiometric dating of hydrocarbon deposits using Rhenium-Osmium isotopes[J]. Science, 2005, 308(5726): 1293-1295.
    [124] Lillis P G, Selby D. Evaluation of the rhenium-osmium geochronometer in the Phosphoria petroleum system, Bighorn Basin of Wyoming and Montana, USA[J]. Geochimica et Cosmochimica Acta, 2013, 118: 312-330.
    [125] Selby D, Creaser R A, Dewing K, et al. Evaluation of bitumen as a 187Re-187Os geochronometer for hydrocarbon maturation and migration: A test case from the Polaris MVT deposit, Canada[J]. Earth and Planetary Science Letters, 2005, 235(1/2): 1-15.
    [126] Selby D, Creaser R A, Fowler M G. Re-Os elemental and isotopic systematics in crude oils[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 378-386.
    [127] Chu Z Y, Wang M J, Liu D W, et al. Re-Os dating of gas accumulation in Upper Ediacaran to lower Cambrian dolostone reser-voirs, central Sichuan Basin, China[J]. Chemical Geology, 2023, 620: 121342.
    [128] Yin L, Zhao P P, Liu J J, et al. Re-Os isotope system in organic-rich samples for dating and tracing: Methodology, principle, and application[J]. Earth-Science Reviews, 2023, 238: 104317.
    [129] Liu J J, Zhou H G, Pujol M, et al. The bitumen formation and Re-Os characteristics of a CO2-rich pre-salt gas reservoir of the Kwanza Basin, offshore Angola[J]. Marine and Petroleum Geology, 2022, 143: 105786.
    [130] Sassen R. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation[J]. Organic Geochemistry, 1988, 12(4): 351-361.
    [131] Charrié-Duhaut A, Lemoine S, Adam P, et al. Abiotic oxidation of petroleum bitumens under natural conditions[J]. Organic Geochemistry, 2000, 31(10): 977-1003.
    [132] 谢增业,张本健,杨春龙,等. 川西北地区泥盆系天然气沥青地球化学特征及来源示踪[J]. 石油学报,2018,39(10):1103-1118.

    Xie Zengye, Zhang Benjian, Yang Chunlong, et al. Geochemical characteristics and source trace of the Devonian natural gas and bitumen in northwest Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(10): 1103-1118.
    [133] 朱扬明,李颖,郝芳,等. 四川盆地东北部海、陆相储层沥青组成特征及来源[J]. 岩石学报,2012,28(3):870-878.

    Zhu Yangming, Li Ying, Hao Fang, et al. Compositional characte-ristics and origin of marine and terrestrial solid reservoir bitumen in the northeast Sichuan Basin[J]. Acta Petrologica Sinica, 2012, 28(3): 870-878.
  • [1] 于雯泉.  致密砂岩储层成因类型与致密化过程差异性 . 沉积学报, 2023, 41(4): 1271-1280. doi: 10.14027/j.issn.1000-0550.2021.158
    [2] 徐伟, 杜晓峰, 黄晓波, 宋章强, 李正宇.  混合沉积研究进展与关键问题 . 沉积学报, 2019, 37(2): 225-238. doi: 10.14027/j.issn.1000-0550.2018.152
    [3] 包建平, 斯春松, 蒋兴超, 张润和, 朱翠山, 黄羚, 马立桥, 王鹏万.  黔北坳陷过成熟烃源岩和固体沥青中正构烷烃系列的双峰态分布 . 沉积学报, 2016, 34(1): 181-190. doi: 10.14027/j.cnki.cjxb.2016.01.017
    [4]  珠江口盆地番禺低隆起—白云凹陷北坡干酪根热演化模拟与生烃 . 沉积学报, 2013, 31(1): 176-183.
    [5] 王力.  济阳坳陷孤西断裂带深层天然气成因类型 . 沉积学报, 2009, 27(1): 172-179.
    [6] 陈致林.  利用双金刚烷指标研究济阳坳陷凝析油的成熟度和类型 . 沉积学报, 2008, 26(4): 705-708.
    [7] 王铜山.  川东北飞仙关组储层固体沥青地球化学特征及其气源指示意义 . 沉积学报, 2008, 26(2): 340-348.
    [8] 孟仟祥.  盐湖相低演化烃源岩的生烃机理及生物标志物演化特征——沥青“A”热模拟 . 沉积学报, 2007, 25(5): 800-807.
    [9] 赵东升.  柴达木盆地西部地区古、新近系油源成熟度 . 沉积学报, 2007, 25(2): 319-324.
    [10] 王传刚, 王铁冠, 张卫彪, 何发歧.  塔里木盆地北部塔河油田原油分子地球化学特征及成因类型划分 . 沉积学报, 2006, (6): 901-909.
    [11] 王传刚 王铁冠 张卫彪 何发歧.  塔里木盆地北部塔河油田原油分子地球化学特征及成因类型划分 . 沉积学报, 2006, 24(06): 901-909.
    [12] 付锁堂, 冯乔, 张文正.  鄂尔多斯盆地苏里格庙与靖边天然气单体碳同位素特征及其成因 . 沉积学报, 2003, 21(3): 528-532,538.
    [13] 秦承志, 王先彬, 林锡祥, 妥进才, 周世新.  辽河盆地埋藏史及烃源岩成熟度演化史的数值模拟 . 沉积学报, 2002, 20(3): 493-498.
    [14] 罗明高, 黄键全, 唐洪.  油气聚集微观定量模型 . 沉积学报, 2000, 18(1): 151-156.
    [15] 梅冥相, 徐德斌, 周洪瑞.  米级旋回层序的成因类型及其相序组构特征 . 沉积学报, 2000, 18(1): 43-49.
    [16] 肖贤明, 吴治君, 刘德汉, 申家贵, 贾蓉芬, 赵林.  早古生代海相烃源岩成熟度的有机岩石学评价方法 . 沉积学报, 1995, 13(2): 112-119.
    [17] 沈平, 徐永昌, 刘文汇, 陶明信.  天然气研究中的稀有气体地球化学应用模式 . 沉积学报, 1995, 13(2): 48-58.
    [18] 黄永松, 傅家谟, 盛国英, 陈义贤, 李茂芬.  纯沥青质热解法研究辽河西部凹陷西斜坡重油序列的原油对比 . 沉积学报, 1991, 9(S1): 67-74.
    [19] 肖贤明, 刘德汉, 傅家谟.  沥青反射率作为烃源岩成熟度指标的意义 . 沉积学报, 1991, 9(S1): 138-146.
    [20] 刘魁梧.  沉积磷块岩结构类型、成因及成矿阶段 . 沉积学报, 1985, 3(1): 29-41.
  • 加载中
图(7)
计量
  • 文章访问数:  276
  • HTML全文浏览量:  37
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-28
  • 修回日期:  2023-06-01
  • 录用日期:  2023-06-19
  • 网络出版日期:  2023-06-19
  • 刊出日期:  2024-10-10

目录

    固体沥青形态、成因以及应用研究进展

    doi: 10.14027/j.issn.1000-0550.2023.048
      基金项目:

      国家自然科学基金项目 42002116

      作者简介:

      李长志,男,1991年出生,博士,讲师,油气成藏地质学,E-mail: [email protected]

      通讯作者: 文华国,男,博士,教授,储层沉积学,E-mail: [email protected]

    摘要: 目的 固体沥青广泛分布于全球各大含油气盆地中,在油气勘探领域具有广阔的应用前景,特别对深层—超深层碳酸盐岩油气勘探尤为重要。然而,在固体沥青具体应用过程中,也存在固体沥青反射率难以确定、油气源对比参数适用性受成因约束等诸多问题,若不妥善处理,可能会得出错误的成果认识。因此,需要对固体沥青在油气勘探中的应用进行有效的归纳总结。 方法 此次研究结合广泛的文献调研,首先对与应用研究密切相关的固体沥青形态学特征和成因类型进行分析,然后总结固体沥青在油气勘探中的诸多应用并指出其中的优势与不足。 结果 固体沥青发育复杂多样的光性结构,主要受形成环境、母质成分等因素控制;其同样具有复杂多样的超显微形态,可能受运移和天然气的生成及逸散等因素控制。固体沥青具有多种成因类型,在有机元素组成、碳和硫同位素值以及生物标志化合物组成等方面差异显著;可用于指示油气的生成和运聚、表征热演化成熟度以及追踪油气来源等,但由于不同成因固体沥青油气源对比参数的适用性差异很大,应用时需判断其成因类型。 结论 该研究为固体沥青的有效应用提供了有力的支撑,对深层—超深层油气勘探具有重要的指导作用。

    English Abstract

    李长志, 郭佩, 豆霜, 文华国. 固体沥青形态、成因以及应用研究进展[J]. 沉积学报, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
    引用本文: 李长志, 郭佩, 豆霜, 文华国. 固体沥青形态、成因以及应用研究进展[J]. 沉积学报, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
    LI ChangZhi, GUO Pei, DOU Shuang, WEN HuaGuo. Research Progress on Solid Bitumen Morphology, Genesis, and Application[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
    Citation: LI ChangZhi, GUO Pei, DOU Shuang, WEN HuaGuo. Research Progress on Solid Bitumen Morphology, Genesis, and Application[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1479-1493. doi: 10.14027/j.issn.1000-0550.2023.048
      • 沥青的概念范畴在不同学科领域差异很大,在有机地球化学领域,沥青被定义为石油中可溶于有机溶剂如二氯甲烷、甲苯等的组分[12];而在有机岩石学领域,沥青被定义为充填岩石孔、洞、缝,由干酪根或原油等分解形成的次生组分[35]。本文采用有机岩石学的概念,为便于区分,称为固体沥青。作为干酪根或原油等成岩蚀变的产物,固体沥青与油气之间存在密切的联系,其岩石矿物学和地球化学等特征被广泛应用于油气勘探,例如固体沥青的反射率可以反映热演化成熟度,固体沥青蕴含的生物标志化合物等信息可以追踪油气的来源等[68]。固体沥青广泛分布于世界各大含油气盆地中,例如美国的拉顿盆地[9]、加拿大的西加拿大沉积盆地[10]、中东的美索不达米亚盆地[11]、澳大利亚的乔治亚盆地[12]和我国的四川盆地[1314]、塔里木盆地[1516]、准噶尔盆地[1718]以及鄂尔多斯盆地[1920]等,因而固体沥青具有广阔的应用前景。

        近年来,随着油气向深层—超深层领域的不断推进,固体沥青及其在油气勘探中的应用受到了越来越多的关注,已成为全球研究热点[2125]。然而,在固体沥青具体应用过程中,也存在诸多问题,若不妥善处理,可能会得出错误的成果认识。典型的问题有:(1)不同成因固体沥青油气源对比参数的适用性差异很大,不能直接应用[2629];(2)固体沥青具有多种产状且部分固体沥青发育复杂的光性结构,给反射率的测定带来很大困惑[9,21,3031];(3)固体沥青的反射率和拉曼光谱参数与成熟度的对应关系不同地区差异很大,不能直接套用[3235];(4)古油藏对应的固体沥青含量下限值仍有分歧,给古油藏的判别带来很大不便等等[3638]

        固体沥青的应用研究与其形态学特征和成因类型密切相关,例如固体沥青反射率的测定受其微观结构的影响,固体沥青油气源对比参数的应用受其成因类型的约束。为了更好地推进固体沥青的应用研究,笔者通过广泛的文献调研和分析,对固体沥青的应用研究、形态学特征和成因类型进行归纳总结,梳理固体沥青复杂的形态学特征和多样的成因类型,明确固体沥青在实际应用中的优势与不足,为固体沥青在油气勘探领域的应用提供有力的支撑。

      • 作为干酪根或原油等成岩蚀变的产物,固体沥青在野外露头或探井岩心中多以充填溶洞或各类裂缝的形式存在(图1)。固体沥青可以独自全充填于溶洞、裂缝之中(图1a~c),也可与方解石、白云石、黄铁矿、闪锌矿、石英等矿物共同充填溶洞、裂缝(图1d~f)。对后者而言,根据固体沥青与共存矿物的分布特征可以大致判别其形成时间和期次,若固体沥青紧贴洞壁或缝壁分布(图1d),说明其形成时间早于共存矿物;若固体沥青分布于溶洞或裂缝中心(图1e,f),说明其形成时间晚于共存矿物或与共存矿物一致。

        图  1  固体沥青的宏观产状

        Figure 1.  Macroscopic occurrence of solid bitumen

        在显微镜下,固体沥青多呈贴边充填(图2a)、独自全充填(图2b,c)或与其他矿物共同充填(图2d)于各类孔隙以及微裂缝之中,独自全充填的固体沥青产状受所充填的孔隙或裂缝的形态约束。与其他矿物共同充填孔隙或微裂缝时,也可根据固体沥青与共存矿物的赋存特征判断其形成时间和期次。在单偏光下,固体沥青为黑色、棕黑色(图2a~d);在荧光下,低成熟固体沥青大多数情况下发黄绿色荧光,而高—过成熟固体沥青基本不发光[24,42]图2e,f)。

        图  2  固体沥青的微观产状

        Figure 2.  Microscopic occurrence of solid bitumen

      • 在微观视角下,固体沥青并不像表观那样具有均一的质地,反而具有复杂多样的微观结构特征。在油浸偏振光/反射光下,固体沥青具有两类光性结构:均一性(isotropic)和各向异性(anisotropy),其中各向异性光学结构主要出现在热成因固体沥青(在高温条件下受热作用形成的固体沥青)中,可进一步分为细粒马赛克型(fine-grained mosaic)、中粒马赛克型(medium-grained mosaic)、粗粒马赛克型(coarse-grained mosaic)、粗流线马赛克型(coarse flow mosaic)、域型(domain)以及纤维型(fibrous)等[10,31,43]图3)。在高精度场发射扫描电镜下,固体沥青同样具有多样的超显微形态,常呈块状、指状、多孔状、瘤状、片状、薄皮球状、葡萄状以及蠕虫状等(图4)。

        图  3  固体沥青的不同光性结构[10,31,43]

        Figure 3.  Optical structures of solid bitumen[10,31,43]

        图  4  不同超显微形态固体沥青[4344]

        Figure 4.  Ultramicroscopic morphology of solid bitumen[4344]

        固体沥青的各向异性光学结构主要缘于有机质受热在内部形成的中间相,一些模拟实验表明固体沥青光性结构由均一性向各向异性转变一般需要350 ℃左右高温[4548]。但母质成分同样影响固体沥青受热形成的各向异性光性结构类型,具有弱各向异性光性结构的固体沥青(如细粒马赛克型)可能来源于高分子量、低可塑性、低流动性的富沥青质原油,而具有强各向异性光性结构的固体沥青(如粗粒马赛克型、域型以及纤维型等)可能来源于低分子量、高可塑性、高流动性的富芳香烃原油[40,43]。此外,值得注意的是,Khavari-Khorosani et al.[49]、Creaney et al.[50]、Goodarzi et al.[51]、Wilson[52]和Zhang et al.[53]认为具有强各向异性光性结构固体沥青的形成与异常热事件有关。另外,Gao et al.[43]认为固体沥青的粗流线马赛克型和域型光性结构是由小尺寸颗粒马赛克型光性结构合并而成,而粗流线马赛克型和域型光性结构向纤维型光性结构的转变与大量原油裂解生气造成的超压有关。

        固体沥青的超显微形态受到了广大学者们的密切关注,但一直未明确其具体成因,可能受多种因素控制[4344,54]。Gao et al.[43]认为固体沥青的囊泡或多孔状形态主要源自原油向固体沥青转化过程中天然气的生成和逸散。另外,固体沥青的超显微形态也可能与其是否经历运移有关。一般而言,原地形成的固体沥青形态较为完整,多贴靠孔壁或缝壁,发育收缩缝,而异地运移固体沥青类似碎屑颗粒,较为破碎,分散分布在孔隙或裂缝中的自生矿物之间[44,55]。四川盆地东北部长兴组—飞仙关组蠕虫状固体沥青并未紧贴孔壁或缝壁,而是杂乱不规则地堆积于溶缝或溶蚀孔之中,具有断裂接触结构,且被伊利石等黏土矿物包裹缠绕。因此,李胜勇等[44]认为蠕虫状超显微形态可能是固体沥青呈固态或半固态状随热液型流体异地运移,然后由于温压条件改变杂乱堆积于孔洞及裂缝中且形态发生改变的结果。

      • 固体沥青存在多种成因类型,可分为热成因和冷变质成因两类[56],其中热成因包括热化学蚀变作用和热化学硫酸盐还原作用,冷变质成因包括脱沥青作用、生物降解作用等(图5)。值得注意的是,很多研究表明有些固体沥青是多种机制共同作用的产物[24,57],例如南阿曼盐盆前寒武晚期—早寒武世Ara群储层内固体沥青是由热蚀变作用和气体脱沥青共同作用形成[58]

        图  5  固体沥青常见的成因类型

        Figure 5.  Common genetic types of solid bitumen

        热化学蚀变作用是指原油等烃类在高温下热裂解形成固体沥青以及天然气等小分子烃类,需要较高的温度,通常在150 ℃以上[5960]。热化学蚀变作用形成的固体沥青典型案例有英国北海中部中生界储集层中的固体沥青[61]和美国阿拉斯加布鲁克斯山脉区域三叠系—下白垩统地表露头处的固体沥青[62]。值得注意的是,热化学蚀变作用可分为正常热演化蚀变作用(埋藏引起温度升高)和热液蚀变作用(热液引起温度升高)。Gao et al.[43]和Zhang et al.[53]认为川中地区震旦系—寒武系储集层中部分固体沥青由热液蚀变作用形成,与晚二叠世峨眉山玄武岩喷发这一异常热事件有关[43,53]。由热化学蚀变作用形成的固体沥青通常在岩石热解参数上具有低氢指数(HI)和高最高热解峰温(Tmax)的特征[24],具有较高的N/C原子比和δ13C值以及较低的S/C原子比、δ34S值[28,6264]、多环生物标志化合物含量[65],其中由热液蚀变作用形成的固体沥青常与热液矿物(如马鞍状白云石等)共存[53]

        热化学硫酸盐还原作用通常发生在深埋藏碳酸盐岩储集层中,硫酸根离子与油气发生还原反应形成固体沥青以及小分子烃类、硫化氢、二氧化碳等。热化学硫酸盐还原作用形成的固体沥青典型案例有美国怀俄明州LaBarge油田密西西比系Madison组碳酸盐岩储集层中的固体沥青[66]和加拿大阿尔伯塔省布拉佐河区域Nisku组储集层中的固体沥青[67]。由热化学硫酸盐还原作用形成的固体沥青一般具有较低的N/C原子比和δ13C值以及较高的S/C原子比和δ34S值[53,66,6869]

        脱沥青作用是指在外界影响下原油中沉淀析出固体沥青,通常受控于天然气的注入(gas deasphal ting,天然气脱沥青作用)和黏土矿物对沥青质的吸附(natural deasphalting,自然脱沥青作用)[1,43,7071]。烃类气体或二氧化碳注入未饱和油藏中会使原油中沥青溶解度降低进而造成固体沥青的沉淀[72],天然气脱沥青作用形成的固体沥青典型案例有美国得克萨斯州东部West Purt油田断控油藏中发育的固体沥青[73]。黏土矿物(特别是伊利石和高岭石)表面具有很强的吸附极性化合物(如沥青质和树脂)能力,可以使固体沥青从原油中沉淀析出,因此在富含大量黏土矿物的砂岩储集层中,固体沥青常由自然脱沥青作用形成[7071]。由自然脱沥青作用形成的固体沥青典型案例如埃及Shushan盆地侏罗系Khatatba砂岩储集层中发育的固体沥青[71]。脱沥青作用形成的固体沥青主要由NSO化合物、芳烃和沥青质组成[24,74],通常具有较低的热演化成熟度,发黄绿色等荧光,其中天然气脱沥青作用形成的固体沥青常发育丰富的不均匀分布的囊泡[52,7475]

        生物降解作用是指在微生物作用下原油中的正构烷烃、异戊二烯烃、芳香族化合物等易降解成分逐渐被消耗,沥青质和NSO化合物含量逐渐增加,进而衍变为固体沥青[7678]。生物降解作用多发生在近地表温度小于80 ℃的环境中[7980],由生物降解作用形成的固体沥青典型案例如塔里木盆地哈拉哈塘次洼志留系和石炭系储集层中的固体沥青[27]以及美国俄克拉何马州Ouachita山区的固体沥青[81]。由生物降解作用形成的固体沥青中正构烷烃、甾烷及藿烷等易降解组分被生物降解,通常存在生物降解的产物,如25-降藿烷、17-降三环萜烷、C23去甲基四环萜烷等系列生物标志化合物[27,82]

      • 固体沥青在油气勘探中主要有以下应用:(1)是油气生成、运移、聚集的有效证据[6,8384];(2)光学和谱学特征是评价宿主岩石热演化成熟度的有利指标[31,58,8586];(3)蕴含来自源岩的地球化学信息,是油气源对比的重要研究对象[8789]

      • 固体沥青可分为前油固体沥青(pre-oil solid bitumen)和后油固体沥青(post-oil solid bitumen),前者形成于原油生成之前,由烃源岩中的有机质转化而成,而后者形成于原油生成之后,由烃源岩生成的原油、湿气等蚀变而成[24,90]。因此,固体沥青特别是后油固体沥青的存在可以有效证明地质历史时期曾发生过油气的生成、运移和聚集,在油气勘探的早期甚至是寻找地下油气藏的主要标志之一[91]

        固体沥青对油气在烃源岩中的初次运移起着非常重要的作用[24,83,92]。油气的初次运移发生在烃源岩互相连通的油润湿相孔隙网络中[93],然而在油气生成期,烃源岩中的干酪根却难以形成互相连通的网络[24]。由烃源岩中有机质转化而成的网络状前油固体沥青形成于原油形成之前,是早期油气初次运移的有利通道[94]。后油固体沥青网络最早可形成于中成熟阶段(Ro=0.76%)(图6a,b),在Ro>0.80%~0.90%时便可发育纳米级孔隙(图6c,d)[84,9596]。由于纳米级孔隙的存在,固体沥青更容易破裂形成微裂缝,因此,网络状后油固体沥青中的纳米级孔隙和微裂缝相互连通,是中成熟阶段以来油气初次运移的重要通道[24,84]。另外,由于储集层中的固体沥青主要由原油后期蚀变形成,因此固体沥青中的生物标志化合物特征与原油相似,也应受到运移分馏效应的影响,故可用来研究原油二次运移的方向。Chen et al.[6]以四川盆地高磨地区下寒武统气藏为例,利用固体沥青的二苯并噻吩以及烷基二苯并噻吩系列参数顺利恢复了原油的运移方向。

        图  6  Woodford页岩中后油固体沥青连接成网以及发育纳米级孔隙[84]

        Figure 6.  Post⁃oil solid bitumen linked into a network with developed nano⁃scale pores in Woodford shales[84]

        古油藏的识别有多种方法,例如含油包裹体颗粒指数(GOI)、定量颗粒荧光(QGF)、可溶有机质或残余油含量等[36,9798],但对处于高—过成熟阶段的古老深埋藏地层而言,由于原油已经大规模裂解成天然气和固体沥青,上述方法基本已不再适用[38],因此利用固体沥青含量识别古油藏成为极为重要一种方法。关于古油藏对应的固体沥青含量下限值,前人有不同的见解,王飞宇等[36]认为当固体沥青含量大于2%时存在古油藏,而Li et al.[3738]认为这一下限值为1%。因而在利用固体沥青含量判断古油藏时,应结合研究区具体实际,谨慎选取合适的下限值进行分析。

      • 成熟度是评价烃源岩有机质生烃和成藏演化的一个重要指标,长久以来是石油地质地球化学和有机岩石学研究的重要科学问题[24,99]。镜质体反射率是表征热演化成熟度最为常用的指标,然而对于缺少镜质体的古老海相地层而言,固体沥青的反射率和拉曼光谱参数是表征热演化成熟度的有利指标[78,31,56]

        与镜质体反射率能够表征热演化成熟度的原理一致,随着热演化程度的逐渐增高,固体沥青中链烷结构逐渐减少,由于缩合、缔合等作用,芳环结构出现片状结构,且芳香片的间距逐渐缩小,因而导致反射率逐渐增高[100]。已有大量的研究表明,固体沥青反射率与镜质体反射率具有很好的对应关系,因此可以有效表征热演化成熟度[3233,58,101102]。然而,固体沥青反射率表征热演化成熟度也存在一些不足,需谨慎使用。首先,岩石中可能存在多种固体沥青[21,30],同时高热演化固体沥青大多具有很强的光性结构各向异性[9,31],致使沥青反射率测定目标锁定困难、测值偏差很大。其次,固体沥青可以以非常小的颗粒形式存在,容易与镜质组混淆[24,103]。再次,不同区域不同岩性中固体沥青反射率与镜质体反射率的对应关系存在较大差异[3233],不能随意地套换公式,甚至在一些区域,固体沥青反射率根本不能有效表征热演化成熟度[21,104105]

        随着热演化程度的增高,固体沥青的分子结构从无序向有序变化,对应的拉曼光谱特征也会随之变化(图7),因而,固体沥青的拉曼光谱参数可以表征热演化成熟度[107]。拉曼光谱由两个区域组成:一级区域(1 000~1 800 cm-1)和二级区域(2 400~3 500 cm-1),其中一级区域包含两个主峰:无序峰(D峰,1 340~1 360 cm-1)和石墨峰(G峰,约1 580 cm-1[35]。常用的拉曼参数大都为这两个峰的特征参数或参数比值,例如G峰半高宽、D峰半高宽、G-D峰间距、峰面积比、半高宽比、峰高比以及D峰或G峰峰位等[8,34,85]。利用固体沥青的拉曼参数表征热演化成熟度也需注意以下问题:首先,不同区域、不同类型样品对应的能够有效反映热演化成熟度的拉曼光谱参数不同[8,3435];其次,不同拉曼参数可以有效表征的热演化成熟度范围不同,这可能与不同热演化成熟度范围内有机质结构变化不同有关[108],例如G-D峰间距可以有效表征Ro<3.5%时的成熟度,而峰高比可以有效表征Ro>3.5%时的成熟度[85,109];另外,由于数据处理方法以及拟合方法等差异,可能导致不同学者得出的拉曼参数与热演化成熟度的拟合结果不同,使得研究可复制性低[3435]

        图  7  不同热演化成熟度固体沥青的激光拉曼光谱[106]

        Figure 7.  Laser Raman spectra of solid bitumen with different thermal evolution maturity[106]

      • 固体沥青是烃源岩中的有机质直接或间接转化后的产物,因此固体沥青中蕴含了母岩的地球化学信息,可以用于追踪油气来源,特别对高—过成熟阶段地层而言,由于烃类主要以天然气形式存在,蕴含的地化信息少,与其共生的固体沥青是确定天然气来源的有利研究对象。固体沥青常用的油气源对比指标可分为有机和无机两种,有机指标包括碳同位素、生物标志化合物等,无机指标包括微量元素、稀土元素以及铼—锇同位素等[6,26,39,110111]

        一般而言,由原油热化学蚀变作用形成的固体沥青,其碳同位素值比原油重2‰~3‰,而原油碳同位素值一般比其源岩轻1‰~2‰,因此固体沥青的碳同位素值与源岩相似,可以有效用于油气源对比研究[112115]。陈哲龙等[18]结合有机碳同位素对比分析认为,准噶尔盆地玛湖凹陷百口泉组固体沥青来自风城组烃源岩而非乌尔禾组烃源岩。生物标志化合物可以指示源岩的生物来源、沉积环境、热演化成熟度等,是固体沥青最为常用的油气源对比指标[78,116119]。Chen et al.[6]成功地利用甾烷、藿烷、三环萜烷、三芳甾烷、三芴系列等生物标志化合物参数对四川盆地中部高磨地区震旦系固体沥青的来源进行了分析,认为其主要源自震旦系灯影组藻云岩和下寒武统筇竹寺组海相页岩。

        利用固体沥青的无机指标进行油气源对比是目前较新的研究领域,特别对高—过成熟阶段油气源对比研究具有非常重要的作用[120]。某些微量元素和稀土元素在油气运移过程中较为稳定且受成熟度和后期蚀变作用影响小[3,120122],因此可用于固体沥青的油气源对比研究。常用的指标有反映沉积环境的V/(V+Ni)、Th/U、V/Cr、Mo/Ni、Ce异常值等以及反映物源的Ni和V含量、La/Co、La/Sc等[29,111]。Zhu et al.[29]综合利用上述指标对比分析了川中地区震旦系—下寒武统固体沥青与潜在烃源岩的亲缘性,认为与固体沥青共生的下寒武统龙王庙组天然气来自下寒武统筇竹寺组烃源岩,而震旦系灯影组天然气主要来自筇竹寺组以及灯三段(灯影组第三段)烃源岩。铼和锇具有明显的亲有机质特征[123],主要存在于重组分沥青质中,受热演化、生物降解和水洗作用影响小[78,120,124],在原油运移过程中同样较为稳定[125126],因此也可用于固体沥青的油气源对比研究。铼—锇同位素常用于确定固体沥青的形成时间[16,39,127128],结合恢复的潜在烃源岩的生烃史,便可确定固体沥青的源岩。另外,单独利用固体沥青的锇同位素(187Os/188Os)也可进行油气源对比,例如Liu et al.[129]通过对比固体沥青和烃源岩的锇同位素值,认为安哥拉近海Kwanza盆地Chela组碳酸盐岩中固体沥青主要来源于Red Cuvo和Grey Cuvo组烃源岩。

        利用固体沥青的地球化学特征进行油气源对比研究时需谨慎使用相关地化参数指标,特别是要充分考虑不同成因固体沥青地化参数的适用性。一般而言,由热化学硫酸盐还原作用形成的固体沥青,其碳同位素值会明显降低[28,53],甚至比热化学蚀变作用形成的固体沥青低7‰[130],相反由严重生物降解作用形成的固体沥青,其碳同位素值可能增高[11,131]。由于微生物的降解,固体沥青源自母岩的生物标志化合物特征发生改变,致使易降解的生物标志化合物系列可能不再适用于分析由生物降解作用形成的固体沥青的来源,应根据其生物降解级别谨慎使用相关油气源对比参数[2627]。另外,部分生物标志化合物在高—过成熟条件下会发生复杂的转变,可能致使由热化学蚀变作用等形成的高—过成熟固体沥青中一些对应的参数失去原本的指示意义[29,78,89]。值得注意的是,由于微量元素、稀土元素以及铼—锇同位素可以有效用于油气源对比研究的理论基础仍存在不足[120],考虑到不同成因固体沥青在形成过程中受到的复杂流体—岩石相互作用差异性很大,因此不同成因固体沥青微量元素、稀土元素以及铼—锇同位素等参数的适用性可能存在差异,所以在进行油气源对比时需注意所选参数的有效性分析。

      • 由于国际油气需求量的持续增长和常规油气资源的后继乏力,深层—超深层逐步变为油气勘探的重点领域。对于深层—超深层地层,由于埋深大,地层热演化程度高,大多处于高—过成熟状态,烃源岩生成的原油大都热裂解形成天然气和固体沥青,因此固体沥青是指示油气生成、运移和聚集的有利证据。同时,天然气成分简单,可用的地球化学指标少,难以精确地追踪源岩,而固体沥青成分复杂,蕴含丰富的地球化学信息,是确定共生天然气来源的有效手段。另外,对于深层—超深层海相碳酸盐岩地层而言,由于镜质体相对缺乏,固体沥青反射率同样是表征热演化成熟度的主要手段。因此,固体沥青在深层—超深层油气勘探领域具有不可替代的作用,应用前景广阔。

        利用固体沥青的碳同位素、生物标志化合物等特征追踪油气来源,在油气勘探中应用最为普遍[6,29,132]。由于不同成因类型的固体沥青在形成过程中一些源自母岩的地球化学特征会发生不同程度的改变,其油气源对比参数的适用性差异很大[2829,53,89,133]。因此,在利用固体沥青进行油气源对比研究时应首先判别其成因类型,然后再选择合适的参数进行研究。

      • (1) 固体沥青发育复杂多样的微观结构,主要受形成环境、母质成分、天然气的生成和逸散等因素控制,常见的光性结构可分为均一性和各向异性,其中各向异性光性结构包括细粒马赛克型、中粒马赛克型、粗粒马赛克型、粗流线马赛克型、域型以及纤维型等;常见的超显微形态有块状、指状、多孔状、瘤状、片状、薄皮球状、葡萄状以及蠕虫状等。

        (2) 固体沥青具有多种成因类型,地球化学等特征差异显著。由热化学蚀变作用形成的固体沥青具有较高的N/C原子比和δ13C值以及较低的S/C原子比和δ34S值,其中由热液蚀变作用形成的固体沥青常与热液矿物如马鞍状白云石等共存。由热化学硫酸盐还原作用形成的固体沥青具有较低的N/C原子比和δ13C值以及较高的S/C原子比和δ34S值。由脱沥青作用形成的固体沥青主要由NSO化合物、芳烃和沥青质组成,通常具有较低的热演化成熟度,发黄绿色等荧光,并且由天然气脱沥青作用形成的固体沥青常发育丰富的不均匀分布的囊泡。由生物降解作用形成的固体沥青中正构烷烃、甾烷及藿烷等易降解组分被生物降解并且通常存在生物降解的产物,如25-降藿烷、17-降三环萜烷、C23去甲基四环萜烷等系列生物标志化合物。

        (3) 固体沥青在油气勘探领域具有广泛的应用,其本身可用于指示油气的生成、运移和聚集,反射率和激光拉曼参数可用于表征热演化成熟度,碳同位素、生物标志化合物、微量和稀土元素以及铼—锇同位素等可用于追踪油气来源。由于不同成因固体沥青的形成机制不同,源自母岩的地球化学特征会发生不同程度的改变,致使不同成因固体沥青油气源对比参数的适用性差异很大,因此在应用前需要判别固体沥青的成因类型。

    参考文献 (133)

    目录

      /

      返回文章
      返回