Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

ZHOU Rui, LIU DongNa, DONG XianShu, HAO ChunSheng, ZHOU AnChao. Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1578-1591. doi: 10.14027/j.issn.1000-0550.2022.119
Citation: ZHOU Rui, LIU DongNa, DONG XianShu, HAO ChunSheng, ZHOU AnChao. Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1578-1591. doi: 10.14027/j.issn.1000-0550.2022.119

Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance

doi: 10.14027/j.issn.1000-0550.2022.119
Funds:

National Natural Science Foundation of China 41802191

  • Received Date: 2022-03-15
  • Accepted Date: 2022-11-25
  • Rev Recd Date: 2022-09-23
  • Available Online: 2022-11-25
  • Publish Date: 2024-10-10
  • [Objective and Methods] Triassic strata are considered absent in the Yungang Basin in northcentral North China, while the Shihezi Formation at the top of the Yangquantou section within the Yungang Basin belongs to the Lower Triassic Liujiagou Formation based on the regional geological survey results of the 1:50 000 Shijiatun map. To settle the dispute and determine the reliability of this new understanding, this study conducted lithostratigraphic correlation and detrital zircon dating of the Shihezi Formation from the Madaotou and Yangquantou sections within the Yungang Basin, and compared with other contemporaneous stratigraphic sections in northcentral North China to determine its deposition age. [Results and Conclusions] It shows that the ‘so-called’ Liujiagou Formation identified in the upper part of Yangquantou section has similar lithofacies associations and gravel compositions with the Shihezi Formation in the Madaotou section, and they are both characterized by grey-green or yellow-green medium- to thick-bedded medium- to coarse-grained sandstone interbedded with thin-bedded purple-red siltstone and sandy mudstone, as well as several layers of thick conglomerates. This differs from the diagnostic characteristics of the Liujiagou Formation in the Fugu, Ningwu, Taiyuan Xishan, and Qinshui Basins in North China, which are characterized by abundant light to fresh red thick-bedded medium- to fine-grained arkose. Moreover, the youngest detrital zircons ages (288.0±4.7 Ma) constrained the maximum depositional age to the Middle Permian. Therefore, the strata at the top of the Yangquantou section belongs to the Middle Permian Shihezi Formation, not the Liujiagou Formation. It is inferred that the orogenic belts in the northern margin of North China likely experienced intense compression and uplift during the Late Triassic, resulting in the denudation of the Triassic strata within the Yungang Basin, which was then unconformable overlain by the Lower Jurassic strata.
  • [1] 山西省地质矿产局. 山西省区域地质志[M]. 北京:地质出版社,1989:187-217.

    Shanxi Provincial Bureau of Geology and Mineral Resources. Regional geology of Shanxi province[M]. Beijing: Geological Publishing House, 1989: 187-217.
    [2] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125.
    [3] 刘东娜. 大同双纪含煤盆地煤变质作用与沉积—构造岩浆活动的耦合关系[D]. 太原:太原理工大学,2015:12.

    Liu Dongna. The coupling relationship of coal metamorphism and sedimentary-tectonic magmatic activity for Datong double period coal-bearing basin[D]. Taiyuan: Taiyuan University of Technology, 2015: 12.
    [4] Pearce N J G, Perkins W T, Westgate J A, et al. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials[J]. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144.
    [5] Ludwig K R. ISOPLOT 3.00: A geochronological toolkit for Microsoft Excel[R]. Berkeley: Berkeley Geochronology Center, 2003: 1-70.
    [6] 曾允孚,夏文杰. 沉积岩石学[M]. 北京:地质出版社,1986:35-40.

    Zeng Yunfu, Xia Wenjie. Sedimentary petrology[M]. Beijing: Geological Publishing House, 1986: 35-40.
    [7] 孙蓓蕾,曾凡桂,刘超,等. 太原西山上古生界含煤地层最大沉积年龄的碎屑锆石U-Pb定年约束及地层意义[J]. 地质学报,2014,88(2):185-197.

    Sun Beilei, Zeng Fangui, Liu Chao, et al. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for Upper Paleozoic coal-bearing strata in Xishan, Taiyuan and its stratigraphic significance[J]. Acta Geologica Sinica, 2014, 88(2): 185-197.
    [8] 刘超,孙蓓蕾,曾凡桂. 太原西山上二叠统—下三叠统地层最大沉积年龄的碎屑锆石U-Pb定年约束[J]. 地质学报,2014,88(8):1579-1587.

    Liu Chao, Sun Beilei, Zeng Fangui. Constraints on U-Pb dating of detrital zircon of the maximum depositional age for Upper Permian to Lower Triassic strata in Xishan, Taiyuan[J]. Acta Geologica Sinica, 2014, 88(8): 1579-1587.
    [9] Liu S F, Li Z, Zhang J F. Mesozoic basin evolution and tectonic mechanism in Yanshan, China[J]. Science in China Series D: Earth Sciences, 2004, 47(Suppl.2): 24-38.
    [10] 李洪颜. 华北克拉通原型盆地及岩浆活动时空演化对克拉通破坏的制约[J]. 中国科学(D辑):地球科学,2013,43(9):1396-1409.

    Li Hongyan. Destruction of North China Craton: Insights from temporal and spatial evolution of the proto-basins and magmatism[J]. Science China (Seri. D): Earth Sciences, 2013, 43(9): 1396-1409.
    [11] 杨明慧,刘池洋,曾鹏,等. 华北克拉通晚三叠世沉积盆地原型与破坏早期构造变形格局[J]. 地质论评,2012,58(1):1-18.

    Yang Minghui, Liu Chiyang, Zeng Peng, et al. Prototypes of Late Triassic sedimentary basins of North China Craton (NCC) and deformation pattern of its early destruction[J]. Geological Review, 2012, 58(1): 1-18.
    [12] 彭兆蒙,彭仕宓,吴智平,等. 华北地区三叠纪盆地格局及演化分析[J]. 西安石油大学学报(自然科学版),2009,24(2):34-38.

    Peng Zhaomeng, Peng Shimi, Wu Zhiping, et al. Basin pattern and evolution of Triassic in North China[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(2): 34-38.
    [13] Zhou R, Liu D N, Zhou A C, et al. Provenance analyses of Early Mesozoic sediments in the Ningwu Basin: Implications for the tectonic–palaeogeographic evolution of the northcentral North China Craton[J]. International Geology Review, 2019, 61(1): 86-108.
    [14] Zhou R, Liu D N, Zhou A C, et al. A synthesis of Late Paleozoic and Early Mesozoic sedimentary provenances and constraints on the tectonic evolution of the northern North China Craton[J]. Journal of Asian Earth Sciences, 2019, 185: 104029.
    [15] Zhang S H, Zhao Y, Song B, et al. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the North China Craton: Geochronology, petrogenesis, and tectonic implications[J]. GSA Bulletin, 2009, 121(1/2): 181-200.
    [16] 韩宝福,加加美宽雄,李惠民. 河北平泉光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J]. 岩石学报,2004,(6):1375-1388.

    Han Baofu, Kagami H, Li Huimin. Age and Nd-Sr isotopic geochemistry of the Guangtoushan alkaline granite, Hebei province, China: Implications for Early Mesozoic crust-mantle interaction in North China Block[J]. Acta Petrologica Sinica, 2004, 20(6): 1375-1388.
    [17] Zhang S H, Zhao Y, Ye H, et al. Early Mesozoic alkaline complexes in the northern North China Craton: Implications for cratonic lithospheric destruction[J]. Lithos, 2012, 155: 1-18.
    [18] 张拴宏,赵越,刘建民,等. 华北地块北缘晚古生代:早中生代岩浆活动期次、特征及构造背景[J]. 岩石矿物学杂志,2010,29(6):824-842.

    Zhang Shuanhong, Zhao Yue, Liu Jianmin, et al. Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842.
    [19] Zhang S H, Zhao Y, Liu X C, et al. Late Paleozoic to Early Mesozoic mafic-ultramafic complexes from the northern North China Block: Constraints on the composition and evolution of the lithospheric mantle[J]. Lithos, 2009, 110(1/2/3/4): 229-246.
    [20] 马收先,孟庆任,武国利,等. 内蒙古隆起晚古生代构造隆升的沉积记录[J]. 地质学报,2014,88(10):1771-1789.

    Ma Shouxian, Meng Qingren, Wu Guoli, et al. Late Paleozoic exhumation of the Inner Mongolia paleo-uplift: Evidences from sedimentary records[J]. Acta Geologica Sinica, 2014, 88(10): 1771-1789.
    [21] 邵济安,张永北,张履桥,等. 大同地区早中生代煌斑岩—碳酸岩岩墙群[J]. 岩石学报,2003,19(1):93-104.

    Shao Ji’an, Zhang Yongbei, Zhang Lüqiao, et al. Early Mesozoic dike swarms of carbonatites and lamprophyres in Datong area[J]. Acta Petrologica Sinica, 2003, 19(1): 93-104.
    [22] Liu S F, Su S, Zhang G W. Early Mesozoic basin development in North China: Indications of cratonic deformation[J]. Journal of Asian Earth Sciences, 2013, 62: 221-236.
    [23] Wang Y C, Dong S W, Shi W, et al. The Jurassic structural evolution of the western Daqingshan area, eastern Yinshan belt, North China[J]. International Geology Review, 2017, 59(15): 1885-1907.
    [24] 马寅生. 燕山东段—下辽河地区中新生代盆山构造演化[J]. 地质力学学报,2001,7(1):79-91.

    Ma Yinsheng. The evolution of Mesozoic-Cenozoic basin-mountain structure in the east Yanshan area and Xialiaohe basin[J]. Journal of Geomechanics, 2001, 7(1): 79-91.
    [25] 刘正宏,徐仲元,杨振升. 内蒙古大青山印支运动厘定[J]. 地质论评,2003,49(5):457-463.

    Liu Zhenghong, Xu Zhongyuan, Yang Zhensheng. Indosinian tectonic movement in the Daqingshan region in Inner Mongolia[J]. Geological Review, 2003, 49(5): 457-463.
    [26] Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China[M]//Hendrix M S, Davis G A. Paleozoic and Mesozoic tectonic evolution of central and eastern Asia: From continental assembly to intracontinental deformation. Boulder: Geological Society of America, 2001: 171-197.
  • 附表1 云岗盆地二叠系砂岩样品碎屑锆石U-Pb测年数据表.docx
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)  / Tables(3)

Article Metrics

Article views(78) PDF downloads(19) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-03-15
  • Revised:  2022-09-23
  • Accepted:  2022-11-25
  • Published:  2024-10-10

Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance

doi: 10.14027/j.issn.1000-0550.2022.119
Funds:

National Natural Science Foundation of China 41802191

Abstract: [Objective and Methods] Triassic strata are considered absent in the Yungang Basin in northcentral North China, while the Shihezi Formation at the top of the Yangquantou section within the Yungang Basin belongs to the Lower Triassic Liujiagou Formation based on the regional geological survey results of the 1:50 000 Shijiatun map. To settle the dispute and determine the reliability of this new understanding, this study conducted lithostratigraphic correlation and detrital zircon dating of the Shihezi Formation from the Madaotou and Yangquantou sections within the Yungang Basin, and compared with other contemporaneous stratigraphic sections in northcentral North China to determine its deposition age. [Results and Conclusions] It shows that the ‘so-called’ Liujiagou Formation identified in the upper part of Yangquantou section has similar lithofacies associations and gravel compositions with the Shihezi Formation in the Madaotou section, and they are both characterized by grey-green or yellow-green medium- to thick-bedded medium- to coarse-grained sandstone interbedded with thin-bedded purple-red siltstone and sandy mudstone, as well as several layers of thick conglomerates. This differs from the diagnostic characteristics of the Liujiagou Formation in the Fugu, Ningwu, Taiyuan Xishan, and Qinshui Basins in North China, which are characterized by abundant light to fresh red thick-bedded medium- to fine-grained arkose. Moreover, the youngest detrital zircons ages (288.0±4.7 Ma) constrained the maximum depositional age to the Middle Permian. Therefore, the strata at the top of the Yangquantou section belongs to the Middle Permian Shihezi Formation, not the Liujiagou Formation. It is inferred that the orogenic belts in the northern margin of North China likely experienced intense compression and uplift during the Late Triassic, resulting in the denudation of the Triassic strata within the Yungang Basin, which was then unconformable overlain by the Lower Jurassic strata.

ZHOU Rui, LIU DongNa, DONG XianShu, HAO ChunSheng, ZHOU AnChao. Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1578-1591. doi: 10.14027/j.issn.1000-0550.2022.119
Citation: ZHOU Rui, LIU DongNa, DONG XianShu, HAO ChunSheng, ZHOU AnChao. Stratigraphic Age of the Shihezi Formation in the Yungang Basin and Its Geological Significance[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1578-1591. doi: 10.14027/j.issn.1000-0550.2022.119
  • 以往区域地质调查成果认为华北北部云岗盆地缺失三叠系,而最新的1∶5万史家屯测区区域地质调查报告在云岗盆地羊圈头剖面上段发现下三叠统刘家沟组,早前的1∶20万区域地质图平鲁幅填图成果一直将此套地层划归为中二叠统上石盒子组[1]。为解决争议并确定这个新认识的可靠性,本次研究对羊圈头剖面进行实测考察,并与华北中北部其他同时代地层剖面进行岩石地层对比,同时选取争议点层位的砂岩样品进行碎屑锆石测年。

    石盒子组最早于1922年在山西太原东山陈家峪石盒子沟命名[1],岩性特征为灰绿色砂岩夹黄绿、紫红色泥岩,含丰富的植物化石。1∶5万史家屯幅区调成果根据石盒子组所含动、植物化石的发育特征,将其归属于中—上二叠统,即本组下段为中二叠统,上段为上二叠统。

    以往确定地层时代归属的方法主要是依据地层岩性组合、所含古生物化石以及地层接触关系等方法来判定,由于缺少精确的同位素年代学分析,导致不同地区相应层位地层的时代归属争议不断。近年来,随着单矿物U-Pb定年方法和精度的进步,极大地实现了年代学数据的准确获取。锆石既具极强的抗化学和物理风化能力,又具很高的封闭温度,成为年代学物源示踪的首选。此外,沉积岩中最年轻碎屑锆石年龄与其所在地层的沉积年龄相近,因此可利用它来约束地层最大沉积年龄[2]。也就是说,如果沉积盆地接受碎屑补给连续沉积,而源区同时也存在连续的岩浆活动,那么沉积岩中最年轻锆石年龄可以近似等于地层的实际沉积年龄。

    鉴于地层时代归属划分方案的正确性对于理解华北地块二叠纪—三叠纪构造背景具有重要意义,本文对云岗盆地开展沉积岩石学及同位素年代学研究,进行碎屑锆石U-Pb同位素定年,对地层沉积年龄进行年代学约束,并从地层岩性和岩相组合方面,对比云岗盆地马道头和羊圈头剖面石盒子组与府谷、宁武盆地刘家沟组,重新厘定该套地层的时代归属,为区内以往地层时代划分方案提供年代学佐证。

  • 云岗盆地位于华北地块北部,阴山造山带以南,山西块体北部,为一北东—南西展布的不对称向斜,东南翼陡,地层倾角20°~60°,西北翼缓,地层倾角5°~15°。盆地东以口泉—鹅毛口断裂为界与大同新生代裂陷盆地相隔,北以青磁窑断裂为界,南以洪涛山背斜为界与宁武盆地相邻(图1a)。盆地显生宙地层自老至新依次为早古生代寒武纪—奥陶纪碳酸盐岩、晚古生代石炭纪—二叠纪海陆交互相碎屑沉积岩、中生界陆相杂色、红色碎屑岩及新生代松散层,地层出露西北新、东南老。侏罗系作为中生代的主要沉积单元,在盆地广泛分布,并不整合覆盖在上二叠统或更老地层之上。

    Figure 1.  Simplified structural sketch (modified from reference [3]) and stratigraphic column of the Late Paleozoic and Early Mesozoic strata in the Yungang Basin

    云岗盆地构造发育不均衡,东南部构造较复杂、西北部简单。盆地晚古生代—早中生代地层由老到新为上石炭统本溪组、太原组、二叠系山西组、石盒子组、孙家沟组、侏罗系永定庄组、大同组、云岗组(图2a,b)。本次在盆地东南部羊圈头及马道头实测剖面总厚约650 m,包括石盒子组、孙家沟组及永定庄组(图1b)。

    Figure 2.  Geological map and sample locations in the Yungang Basin

    石盒子组按岩性组合特性划分为上中下三段。下段、上段主要由黄绿到灰绿色厚层状中—粗粒长石砂岩夹薄层紫红色砂质泥岩及少量含砾砂岩或砾岩。下段较发育巨厚砾岩层(图3f~h),层数多且厚度大,砾岩以颗粒支撑为主,填隙物为次一级砂粒及黏土杂基,次棱角状,分选较差,砾径2~10 cm,砾石成分主要为石英砂岩、碳酸盐岩、燧石、石英岩,含量介于50%~70%。此外,下段还发育少量灰黑色碳质页岩,部分砂岩斜层理发育,底部具冲刷面。石盒子组中段以紫红色中厚层平行层理砂质泥岩、页岩为主,夹灰黄、灰绿色粉砂岩、泥岩及少量紫红、灰黄色中—薄层中粗粒长石石英砂岩,底部可见冲刷面。上二叠统孙家沟组主要为紫红色中厚层状粉砂岩及泥岩(图3a),夹少量细砂岩透镜体,与下伏石盒子组整合接触。下侏罗统永定庄组不整合覆盖在上古生界地层之上,上段为河湖相灰黄、灰色中厚层状粗—中粒长石砂岩,棕灰色、灰色砂质泥岩夹浅灰色细粒长石石英砂岩,下段主要为浅灰色中厚层中粗粒长石砂岩,黄色、浅灰色含砾砂岩夹数层杏黄色、灰色粉砂岩、砂质泥岩,底部含有1~2 m厚的浅红色、灰色砾岩及含砾粗砂岩,斜层理较发育(图3d,e,i)。

    Figure 3.  Field photos showing features of the Permian⁃Jurassic stratigraphy in the Yungang Basin

  • 本次研究分别在羊圈头剖面争议点层位及马道头剖面石盒子组地层采集砂岩样品(Sh13、Sh32),并进行碎屑锆石U-Pb年龄测试。羊圈头剖面位于左云县羊圈头西约1.5 km的山坡(112°45′59″ E,39°47′58″ N),马道头剖面位于马道头村东北约1.7 km的山坡(112°47′10″ E,39°52′31″ N),具体位置见图2星号采样处。砂岩样品(Sh13)为紫红色中细粒长石砂岩,泥质胶结,磨圆度较好,分选中等;样品(Sh32)为黄绿色中细粒长石砂岩,填隙物为钙质胶结物及黏土杂基,分选中等,磨圆度较好。

    样品的破碎、筛选、重液及磁选、锆石挑选及制靶工作在河北廊坊诚信地质服务有限公司完成,U-Pb同位素测年是在西北大学大陆动力学国家重点实验室完成的。测试设备为LA-ICP-MS (Agilent7500a),193-nm激光发射器(GeoLas200M)的激光剥蚀斑束直径20 μm,频率10 Hz,单点剥蚀采样。年龄计算外标为标准锆石91500,U、Th及Pb含量计算使用NIST610标准[4]。微量元素和U-Pb年龄计算使用GLITTER 4.0程序。使用206Pb/207Pb值计算年龄大于1 000 Ma的锆石,使用206Pb/238U值计算年龄小于1 000 Ma的锆石。笔者借助锆石阴极发光照片及透、反射光照片,分别在样品Sh13、Sh32随机挑选了160个、123个锆石测点进行测年,最终选择了年龄谐和度大于90%且Pb校正率小于2%的测点。年龄谐和图、均方图及密度分布图使用ISOPLOT软件(4.15)[5]

  • 从样品中的代表性锆石阴极发光(CL)图片(图4)中可以看到,锆石长度介于50~250 μm,颜色灰暗,具振荡环带或均质结构。前寒武纪锆石为次棱角状—次圆状,显生宙锆石则主要为棱角状,半自形至自形。除4颗锆石以外,其余锆石Th/U比均大于0.1(图5),具岩浆成因的特点。从碎屑锆石U-Pb谐和图以及年龄概率密度直方图(图6)中可以看到,绝大多数年龄数据均落在谐和曲线上。碎屑锆石U-Pb年龄数据见补充材料1

    Figure 4.  Cathodoluminescence (CL) images of representative zircons

    Figure 5.  Th/U versus U⁃Pb age diagram for detrital zircons

    Figure 6.  Detrital zircon U⁃Pb concordia diagrams and age histograms

    从石盒子组下段长石砂岩样品Sh13中随机挑选了122颗锆石,共测试了123个点,其中116个测点的年龄谐和度大于90%(图6a)。主要年龄结果分三组:2 640~2 249 Ma、2 179~1 713 Ma、436~285 Ma,占比分别为26%、59%、15%,峰值年龄分别为2.5 Ga、1.8 Ga、326 Ma(图6b)。其中三颗最年轻锆石(291.3 Ma、287.2 Ma、285.4 Ma)的加权平均年龄为288.0±4.7 Ma,将石盒子组最大沉积年龄约束到中二叠世。

    同时从石盒子组上段长石砂岩样品Sh32中随机挑选了160颗锆石,共测试160个点,其中145个点的年龄谐和度大于90%(图6c)。年龄组成主要分为三组:2 665~2 300 Ma(22点,占比15%)、2 155~1 606 Ma(107 点,74%)、441.7~263.5 Ma(16点,11%),主要峰值年龄为1.8 Ga,次要峰值年龄为2.5 Ga及332 Ma(图6d)。其中三颗最年轻锆石(280.5 Ma、270.4 Ma、263.5 Ma)加权平均年龄为272.8±4.3 Ma,同样接近中二叠世最大沉积年龄。

    另外,之前在云岗盆地南边相邻宁武盆地三叠系刘家沟组也做了碎屑锆石测年工作,选择刘家沟组底部长石砂岩样品(Tl1)共测试了100锆石测点,其中93个测点的年龄谐和度大于90%(图6e)。主要年龄组成也分为三组,2 621~2 324 Ma(46%)、2 169~1 661 Ma(28%)及409~258 Ma(26%),与石盒子组两样品主要峰值年龄1.8 Ga不同的是,刘家沟组样品主要峰值年龄为2.5 Ga,次要峰值年龄为1.8 Ga和305 Ma(图6f)。三颗最年轻锆石(269.5 Ma、264.9 Ma、257.5 Ma)的加权平均年龄为264.3±5.5 Ma。

  • 在云岗盆地羊圈头、马道头剖面系统采集了二叠系石盒子组、孙家沟组砂岩样品(表1),具体采样位置见图2;选取代表性层位砂体制作7张薄片,使用偏光显微镜统计砂岩碎屑组分,每张薄片统计300个以上的碎屑颗粒,参照曾允孚等[6]砂岩分类方案,确定石盒子组、孙家沟组的砂岩主要类型为长石砂岩及岩屑长石砂岩(表2)。孙家沟组长石砂岩、岩屑长石砂岩多为紫红、浅红色(图3b),主要为细粒结构,个别为中粒结构,分选较好,碎屑颗粒镜下多为次棱角—次圆状,填隙物主要为钙质胶结物及黏土杂基。石盒子组长石砂岩的新鲜面多为黄绿、灰绿色,个别呈浅红色,多数为中—粗粒,少量为细粒、含砾粗粒结构,少数砂岩层底部含有砾级碎屑(图3f~h),部分砂体具板状、槽状交错层理,碎屑颗粒多呈次棱角—次圆状,分选一般,泥质胶结,少数为钙质胶结。骨架颗粒成分(表2)石英为主,其中单晶石英含量介于26.0%~60.2%,多晶石英石英2.0%~20.5%,长石次之(21.0%~66.7%),少量的燧石(3.5%~6.9%)及花岗岩屑(2.0%~5.8%),粉砂岩及泥岩岩屑(1.8%~5.3%),变质岩屑1.7%,及极少量云母碎片(0~1.3%)(图7a,b)。

    顺序样品编号采集位置岩性备注
    1P3112°46′00″ E39°48′03″ N二叠系石盒子组黄绿色中粒长石砂岩云岗
    2P5112°45′50″ E39°48′09″ N二叠系石盒子组灰绿色中—粗粒长石砂岩云岗
    3P8112°45′45″ E39°48′15″ N二叠系石盒子组紫红色细—中粒长石砂岩云岗
    4P15112°45′40″ E39°48′19″ N二叠系石盒子组黄绿色中—粗粒长石砂岩云岗
    5P19112°44′55″ E39°48′37″ N二叠系石盒子组灰黄色粗粒长石砂岩云岗
    6P23112°46′55″ E39°52′20″ N二叠系孙家沟组紫红色细粒岩屑长石砂岩云岗
    7P26112°47′02″ E39°52′23″N二叠系孙家沟组灰红色细粒长石砂岩云岗
    8T1111°00′30″ E39°00′50″ N三叠系刘家沟组浅红色细粒岩屑长石砂岩府谷
    9T3111°00′27″ E39°00′57″ N三叠系刘家沟组浅红色细粒岩屑长石砂岩府谷
    10T5111°00′26″ E39°01′05″ N三叠系刘家沟组灰红色中—细粒长石砂岩府谷
    11T8111°00′25″ E39°01′18″ N三叠系刘家沟组紫红色细粒岩屑长石砂岩府谷
    12T11111°00′25″ E39°01′23″ N三叠系刘家沟组肉红色中粒长石砂岩府谷
    13T13111°00′26″ E39°01′35″ N三叠系刘家沟组浅红色细粒长石砂岩府谷
    14T15111°00′24″ E39°01′39″ N三叠系刘家沟组浅红色细粒长石砂岩府谷

    Table 1.  Locations and lithology of the samples from the Yungang and Fugu Basins

    时代层号厚度/m岩石名称砂岩骨架颗粒成分及其含量/%
    孙家沟组262.3浅红色细粒长石砂岩单晶石英(52.0),多晶石英(10.5),长石(30.0),燧石(3.5),花岗岩屑(2.0),粉砂岩屑(2.0)
    231.5紫红色细粒岩屑长石砂岩单晶石英(60.2),多晶石英(7.8),长石(21.0),花岗岩屑(2.6),泥质粉砂岩屑(5.0),变质岩屑(1.7),绿帘石(1.7)
    石盒子组197.5灰黄色中粒长石砂岩单晶石英(39.1),多晶石英(11.2),长石(34.8),燧石(3.7),花岗岩屑(5.8),粉砂岩屑(4.1),云母(1.3)
    154.5黄绿色中粗粒长石砂岩单晶石英(45.8),多晶石英(20.5),长石(22.8),燧石(6.9),花岗岩屑(2.2),粉砂岩屑(1.8)
    820.0紫红色中细粒长石砂岩单晶石英(26.0),多晶石英(2.0),长石(66.7),粉砂岩屑(5.3)
    58.3灰绿色中粗粒长石砂岩单晶石英(40.0),多晶石英(3.0),长石(52.0),花岗岩屑(2.0),泥质粉砂岩屑(3.0)
    313.5黄绿色中粒长石砂岩单晶石英(40.2),多晶石英(16.8),长石(28.8),燧石(5.2),花岗岩屑(4.7),泥岩+粉砂岩屑(3.3),云母(1.0)

    Table 2.  Skeleton particle composition of the Middle-Upper Permian sandstones in the Yungang Basin

    Figure 7.  Representative photomicrographs of the Permian⁃Triassic sandstone samples

  • 为了与邻区盆地刘家沟组进行岩性对比,笔者在府谷县阴塔村剖面以及宁武县孙家沟剖面逐层采集了三叠系下统刘家沟组砂岩样品,具体采样位置见图8,并选取其中代表性砂体磨制薄片。在显微镜下进行砂岩碎屑组分的鉴定统计,结果显示刘家沟组砂岩类型主要为岩屑长石砂岩及长石砂岩(表3)。

    Figure 8.  Geological map and sample locations in the Ningwu and Fugu Basins

    时代层号厚度/m岩石名称砂岩骨架颗粒成分及其含量/%宁武盆地
    刘家沟组1331.0紫红色中细粒岩屑长石砂岩单晶石英(66.7),多晶石英(5.5),长石(17.0),花岗岩屑(3.4), 泥质粉砂岩屑(3.7),变质岩屑(1.8),石榴子石(0.9),
    1142.5肉红色中细粒岩屑长石砂岩单晶石英(56.5),多晶石英(13.4),长石(18.3),燧石(6.8), 花岗岩屑(3.2),粉砂岩屑(13.1),绿帘石(0.8),石榴子石(0.6)
    950.5紫红色细粒岩屑长石砂岩单晶石英(64.3),多晶石英(9.0),长石(16.1),燧石(5.6), 粉砂岩屑(4.4),绿帘石(0.3),云母(0.3)
    515.6灰红色细粒岩屑长石砂岩单晶石英(52.9),多晶石英(10.5),长石(25.0),燧石(1.5), 花岗岩屑(1.9),粉砂岩屑(5.8),云母(2.4)
    419.5灰红色中粒长石砂岩单晶石英(51.2),多晶石英(15.8),长石(21.0), 花岗岩屑(7.5),泥质粉砂岩屑(4.5),
    238.0肉红色中细粒长石砂岩单晶石英(64.7),多晶石英(9.7),长石(19.4),燧石(3.2),花岗岩屑(1.7),粉砂岩屑(1.3)
    刘家沟组1515.5浅红色细粒长石砂岩单晶石英(39.2),多晶石英(5.7),长石(48.1), 花岗岩屑(4.5),泥质粉砂岩屑(2.5)府谷盆地
    1335.0灰红色细粒长石砂岩单晶石英(49.0),多晶石英(1.0),长石(45.0), 花岗岩屑(1.0),粉砂岩屑(3.0),绿帘石(1.0)
    1160.0肉红色中粒长石砂岩单晶石英(45.7),多晶石英(3.1),长石(43.0), 花岗岩屑(3.5),泥质粉砂岩屑(3.5),云母(1.2)
    89.5紫红色细粒岩屑长石砂岩单晶石英(60.9),多晶石英(5.1),长石(21.0), 花岗岩屑(6.5),粉砂岩屑(5.5),云母(1.0)
    521.5灰红色中细粒岩屑长石砂岩单晶石英(62.2),多晶石英(7.0),长石(18.0), 花岗岩屑(4.3),泥质粉砂岩屑(3.3),变质岩屑(3.2),云母(2.0)
    35.4浅红色细粒岩屑长石砂岩单晶石英(61.0),多晶石英(4.0),长石(21.0),燧石(2.0),花岗岩屑(4.8),粉砂岩屑(5.0),变质岩屑(2.2),
    112.5浅红色细粒岩屑长石砂岩单晶石英(55.3),多晶石英(4.0),长石(26.8),花岗岩屑(4.4),泥岩+粉砂岩屑(8.5),云母(1.0)

    Table 3.  Skeleton particle composition of the Triassic Liujiagou Formation sandstones in the Ningwu and Fugu Basins

    刘家沟组岩屑长石砂岩、长石砂岩新鲜面多数呈肉红色、浅红色、紫红色,少数为灰色,多数为中—细粒结构,个别为粗粒结构,厚层砂岩多数可见正粒序层理, 与下伏砂质泥岩、泥岩冲刷接触,砂体多发育槽状、板状交错层理,少数发育平行层理(图9b,d)。碎屑颗粒多呈次棱角—次圆状,分选一般,泥质胶结为主,孔隙式填充。骨架颗粒成分(表3)显示:单晶石英含量最高(39.2%~66.7%),多晶石英高达15.8%,长石含量次之,介于16.1%~48.1%,含花岗岩屑(1.0%~7.5%)、泥质及粉砂岩屑(1.3%~13.1%)、燧石(1.5%~6.8%)、变质岩屑(0~3.2%),及少量的云母(0~2.4%)(图7c~f)。

    Figure 9.  Field photos of the Triassic Liujiagou Formation stratigraphy in the Ningwu and Fugu Basins

  • 根据1∶5万史家屯幅区调成果在云岗盆地羊圈头剖面上段识别出刘家沟组的具体位置,本次对羊圈头村西山顶厚层砾岩层(图10a)之下的一层中粗粒长石砂岩(Sh13)进行碎屑锆石U-Pb定年。116个谐和度大于90%的锆石中,三颗最年轻锆石给出了288.0±4.7 Ma的加权平均年龄,将地层最大沉积年龄约束到中二叠世。同时,也对马道头剖面石盒子组上段长石砂岩层(Sh32)进行了测年工作,145个点的年龄谐和度大于90%的锆石中,三颗最年轻锆石的加权平均年龄为272.8±4.3 Ma。两组样品最新年龄结果与前人通过地层中古生物化石判定的时代一致[1],也与前人在邻区太原西山盆地石盒子组获得的最年轻碎屑锆石测年结果一致[78]。同时,通过对比宁武盆地(图8a)三叠系刘家沟组底部砂岩碎屑测年结果发现,93个谐和度大于90%的锆石中,三颗最年轻锆石(269.5 Ma、264.9 Ma、257.5 Ma)给出了更年轻的加权平均年龄(264.3±5.5 Ma)。且三组样品所在层位越年轻其最年轻锆石年龄呈现越来越小的趋势。石盒子组两组样品主要峰值年龄为1.8 Ga,而刘家沟组样品主要峰值年龄为2.5 Ga。岩石地层对比方面,我们发现羊圈头剖面上段岩性特征是以黄绿、灰绿色中—厚层状中粗粒砂岩为主,夹数层灰紫红色砂质泥岩及粉砂岩,并在顶部发育数层巨厚含砾砂岩、砾岩层,砾石成分主要为石英砂岩、碳酸盐岩、石英岩(图10b~d)。岩相组合、岩性特征可与盆地内马道头剖面的石盒子组相对比(图10e,f),而非府谷、宁武、沁水以及太原西山盆地刘家沟组的显著特征,即大量发育中—厚层状浅红色中细粒长石砂岩(图9)。因此,综合碎屑锆石年龄结果及地层岩相组合、岩性对比分析,此套地层实为上石盒子组。

    Figure 10.  Field photos of the Permian Shihezi Formation stratigraphy in the Yungang Basin

    那么紧邻阴山带南缘的云岗盆地为何缺失三叠系,而其南部宁武盆地、西南部府谷地区同属华北中北部却广泛发育三叠系,缺失地层究竟是由于沉积后遭受剥蚀还是隆升而未沉积?府谷、宁武盆地三叠系主要为河流相碎屑沉积,府谷地区位于鄂尔多斯盆地东北缘,其下中三叠统与宁武盆地同期地层可对比,且野外勘查两盆地时均未发现边缘相沉积,很可能曾经均是鄂尔多斯三叠系原型盆地的组成部分。近年来关于鄂尔多斯原型盆地恢复与重建的研究[912]认为,太行山脉所在范围也位于鄂尔多斯原型盆地东部范围内。刘东娜[3]通过对云岗盆地口泉沟区域山西组、大原组砂岩进行磷灰石、锆石裂变径迹分析,并利用地层沉积速率及残留厚度恢复地层剥蚀厚度,发现盆地曾经接受过厚达700 m的三叠系沉积,受后期构造运动影响盆地整体挤压抬升并遭受剥蚀,不仅将三叠系沉积剥蚀殆尽,下伏地层也遭受不同程度的剥蚀

    之前的研究通过获得的云岗、宁武盆地二叠系—三叠系岩性特征及锆石U-Pb测年结果,以及大量收集的华北地块众多盆地同时期地层展布特征及同位素年代学数据,建立了年代地层格架,也发现华北北部广泛沉积了早中三叠世地层[1314]。近年来对华北北缘三叠纪岩浆活动特征及构造背景方面的研究表明,早三叠世—晚三叠世早期火成岩具有后碰撞岩浆作用的特点,与中亚造山带碰撞后的伸展及岩石圈的拆沉有关[1520]。邵济安等[21]报道了侵位于大同地区石炭系—二叠系地层的煌斑岩Rb-Sr等时线年龄(229±11 Ma),代表了伸展环境下的产物。

    因此,推测早中三叠世华北中北部及北侧物源区处于碰撞后伸展环境,中北部云岗、宁武、府谷等地广泛沉积了三叠纪地层。随后至晚三叠世晚期,华北中北部发生了区域构造转换及广泛的内陆造山运动[1112,22]。野外勘查时发现云岗盆地口泉、羊圈头、马道头等地的下侏罗统永定庄组不整合超覆于古生界二叠系、石炭系,甚至更老地层之上,一直延续到阴山带南缘。在大同市七峰山以南区域永定庄组下伏地层为二叠系,在七峰山至拖皮沟一带下伏地层为石炭系,往北到云岗沟以北一带下伏地层变更为更老的寒武系[1]。与此同时,我们发现阴山造山带南缘的包头、石拐盆地、燕山带南缘的凌源、朝阳盆地下侏罗统地层与下伏地层也呈角度不整合接触,并发育了底砾岩、古风化壳、逆冲断层等构造[2325]。云岗盆地三叠系的缺失、区域性角度不整合的发现以及河北承德、滦平、北京西山等地上三叠统发育的磨拉石沉积[9,26],记录了华北中北部及北缘的挤压隆升过程,可以推断晚三叠世期间华北地块曾发生过一期强烈的构造事件,导致区域构造体制由伸展环境转变为挤压环境,致使华北北缘阴山—燕山带强烈隆升、逆冲推覆以及华北中北部整体挤压抬升,进而剥蚀了云岗盆地的三叠系。

  • 通过地层岩相组合、岩性对比及同位素年代学综合研究,云岗盆地羊圈头剖面上段识别的所谓刘家沟组与马道头剖面上石盒子组具有相似的岩相组合、岩性特征,同时碎屑锆石测年结果也将地层最大沉积年龄约束到中二叠世,即史家屯幅区调成果认定的刘家沟组实际属于上石盒子组。推测晚三叠世期间华北北部及北缘造山带发生了强烈的挤压抬升,导致华北北部诸盆地发育磨拉石沉积建造以及包头、大同、云岗、朝阳等地发生隆升或褶皱冲断等构造作用,造成众多盆地三叠系遭受剥蚀,后期又被下侏罗统地层不整合覆盖。

Reference (26)
Supplements:
附表1 云岗盆地二叠系砂岩样品碎屑锆石U-Pb测年数据表.docx

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return