Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

LIN Peng, WU ShengHe. Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1592-1606. doi: 10.14027/j.issn.1000-0550.2022.126
Citation: LIN Peng, WU ShengHe. Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1592-1606. doi: 10.14027/j.issn.1000-0550.2022.126

Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin

doi: 10.14027/j.issn.1000-0550.2022.126
Funds:

National Science and Technology Major Project 2011ZX05030-005-02

  • Received Date: 2022-06-10
  • Accepted Date: 2022-11-01
  • Rev Recd Date: 2022-10-22
  • Available Online: 2022-11-01
  • Publish Date: 2024-10-10
  • Objective Continental slopes have become a major focus in petroleum exploration because of their enormous sediment and hydrocarbon potential. Research on the geomorphic evolution of continental slopes contributes to deep-water sedimentology and petroleum exploration. This paper focused on the abundant terrigenous supply of a continental slope in a delta reformed passive continental margin basin. A new methodology for the restoration of ancient slope geomorphic evolution based on the principle of depositional architecture was discussed. Methods Taking a study area on a continental slope in Niger Delta Basin as an example, seismic, logging, and core data were comprehensively applied to reveal the geomorphic evolution characteristics of the continental slope based on the spatio-temporal evolution of depositional architecture in 13 sequences. Results The geomorphic evolution of the study area can be divided into 2 stages. In stage 1,study area transformed from an abyssal plain to continental slope,and the landform was unrestricted. The geomorphic evolution in this stage was driven by the progradation of large deltas. The geomorphic evolution in stage 2 included 3 periods dominated by thrust faults,mud-diapirs,and sedimentation. The landform evolved gradually from restricted to semi-restricted and then to the present non-restricted type. The geomorphic evolution in stage 2 was controlled by gravity sliding. During the thrust faulting,the activity intensity of the underlying flowing mudstone was limited,and the landform was controlled by thrust faults. The study area was located in the remote thrust province of a gravity sliding system. During the mud-diapir period,the intensity of diaper activity increased significantly and was able to change the geomorphic characteristics independently. As a result,the topography of study area began to transform from a thrust to mud-diapir province. Conclusions The gravity sliding structural system was driven by sedimentary processes,and its spatial combination and evolution characteristics were similar to sedimentary facies. The adjacent extensional,mud-diapir and thrust province were closely related in genesis,which was similar to a sequential sedimentary facies. Therefore,the vertical superposition relationship of different structural activities indicated the macro trend of the continental slope advancing seaward contemporaneously. In conclusion,the spatio-temporal evolution characteristics of the gravity flow depositional architecture in the typical deep-water study area can provide important evidence for the restoration of paleogeomorphic evolution of a deep-water continental slope.
  • [1] Kennett J P. Marine geology[M]. Englewood Cliffs: Prentice-Hall, 1982: 813.
    [2] 卓海腾,王英民,徐强,等. 南海北部陆坡分类及成因分析[J]. 地质学报,2014,88(3):327-336.

    Zhuo Haiteng, Wang Yingmin, Xu Qiang, et al. Classification and genesis of continental slopes on the northern South China Sea[J]. Acta Geologica Sinica, 2014, 88(3): 327-336.
    [3] 张光亚,温志新,梁英波,等. 全球被动陆缘盆地构造沉积与油气成藏:以南大西洋周缘盆地为例[J]. 地学前缘,2014,21(3):18-25.

    Zhang Guangya, Wen Zhixin, Liang Yingbo, et al. Tectonic-sedimentary features and petroleum accumulation in the passive continental margin basins of South Atlantic peripheries[J]. Earth Science Frontiers, 2014, 21(3): 18-25.
    [4] 谢玉洪,张功成,唐武,等. 南海北部深水区油气成藏理论技术创新与勘探重大突破[J]. 天然气工业,2020,40(12):1-11.

    Xie Yuhong, Zhang Gongcheng, Tang Wu, et al. Theoretical and technological innovation of oil and gas accumulation and major exploration breakthroughs in deep-water areas, northern South China Sea[J]. Natural Gas Industry, 2020, 40(12): 1-11.
    [5] 柳保军,庞雄,王家豪,等. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义[J]. 石油学报,2019,40(增刊1):124-138.

    Liu Baojun, Pang Xiong, Wang Jiahao, et al. Sedimentary system response process and hydrocarbon exploration significance of crust thinning zone at extensional continental margin of deep-water area in Pearl River Mouth Basin[J]. Acta Petrolei Sinica, 2019, 40(Suppl.1): 124-138.
    [6] Ross W C, Halliwell B A, May J A, et al. Slope readjustment: A new model for the development of submarine fans and aprons[J]. Geology, 1994, 22(6): 511-514.
    [7] O'Grady D B, Syvitski J P M, Pratson L F, et al. Categorizing the morphologic variability of siliciclastic passive continental margins[J]. Geology, 2000, 28(3): 207-210.
    [8] Gong C L, Wang Y M, Pyles D R, et al. Shelf-edge trajectories and stratal stacking patterns: Their sequence-stratigraphic significance and relation to styles of deep-water sedimentation and amount of deep-water sandstone[J]. AAPG Bulletin, 2015, 99(7): 1211-1243.
    [9] Gao M T, Xu S, Zhuo H T, et al. Coupling relationship between shelf-edge trajectories and slope morphology and its implications for deep-water oil and gas exploration: A case study from the passive continental margin, East Africa[J]. Journal of Earth Science, 2020, 31(4): 820-833.
    [10] 龚承林, Steel R J,彭旸,等. 深海碎屑岩层序地层学50年(1970—2020)重要进展[J]. 沉积学报,2022,40(2):292-318.

    Gong Chenglin, Steel R J, Peng Yang, et al. Major advances in deep-marine siliciclastic sequence stratigraphy, 1970 to 2020[J]. Acta Sedimentologica Sinica, 2022, 40(2): 292-318.
    [11] Prather B E, Booth J R, Steffens G S, et al. Classification, lithologic calibration, and stratigraphic succession of seismic facies of intraslope basins, deep-water gulf of Mexico[J]. AAPG Bulletin, 1998, 82(5A): 701-728.
    [12] 苏玉山,王桐,李程,等. 尼日尔三角洲的沉积—构造特征[J]. 岩石学报,2019,35(4):1238-1256.

    Su Yushan, Wang Tong, Li Cheng, et al. The sedimentary and tectonic features of the Niger Delta[J]. Acta Petrologica Sinica, 2019, 35(4): 1238-1256.
    [13] 温志新,徐洪,王兆明,等. 被动大陆边缘盆地分类及其油气分布规律[J]. 石油勘探与开发,2016,43(5):678-688.

    Wen Zhixin, Xu Hong, Wang Zhaoming, et al. Classification and hydrocarbon distribution of passive continental margin basins[J]. Petroleum Exploration and Development, 2016, 43(5): 678-688.
    [14] 吴胜和,纪友亮,岳大力,等. 碎屑沉积地质体构型分级方案探讨[J]. 高校地质学报,2013,19(1):12-22.

    Wu Shenghe, Ji Youliang, Yue Dali, et al. Discussion on hierarchical scheme of architectural units in clastic deposits[J]. Geological Journal of China Universities, 2013, 19(1): 12-22.
    [15] 吴胜和,岳大力,冯文杰,等. 碎屑岩沉积构型研究若干进展[J]. 古地理学报,2021,23(2):245-262.

    Wu Shenghe, Yue Dali, Feng Wenjie, et al. Research progress of depositional architecture of clastic systems[J]. Journal of Palaeogeography, 2021, 23(2): 245-262.
    [16] 于水,程涛,陈莹. 尼日尔三角洲盆地深水沉积体系特征[J]. 地球科学:中国地质大学学报,2012,37(4):763-770.

    Yu Shui, Cheng Tao, Chen Ying. Depositional characteristics of deepwater systems in the Niger Delta Basin[J]. Earth Science: Journal of China University of Geosciences, 2012, 37(4): 763-770.
    [17] Golonka J, Bocharova N Y. Hot spot activity and the break-up of Pangea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 161(1/2): 49-69.
    [18] Bonatti E. Anomalous opening of the equatorial Atlantic due to an equatorial mantle thermal minimum[J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 147-160.
    [19] 邓荣敬,邓运华,于水,等. 尼日尔三角洲盆地油气地质与成藏特征[J]. 石油勘探与开发,2008,35(6):755-762.

    Deng Rongjing, Deng Yunhua, Yu Shui, et al. Hydrocarbon geology and reservoir formation characteristics of Niger Delta Basin[J]. Petroleum Exploration and Development, 2008, 35(6): 755-762.
    [20] 温志新,童晓光,张光亚,等. 全球沉积盆地动态分类方法:从原型盆地及其叠加发展过程讨论[J]. 地学前缘,2012,19(1):239-252.

    Wen Zhixin, Tong Xiaoguang, Zhang Guangya, et al. Dynamic classification of global sedimentary basins: Based on proto-type basin and its lateral superimposing and transforming process[J]. Earth Science Frontiers, 2012, 19(1): 239-252.
    [21] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156-1167.
    [22] Corredor F, Shaw J H, Bilotti F. Structural styles in the deep-water fold and thrust belts of the Niger Delta[J]. AAPG Bulletin, 2005, 89(6): 753-780.
    [23] 李国玉,金之钧. 新编世界含油气盆地图集[M]. 北京:石油工业出版社,2005:320-321.

    Li Guoyu, Jin Zhijun. World atlas of oil and gas basins[M]. Beijing: Petroleum Industry Press, 2005: 320-321.
    [24] 林煜. 海底扇浊积水道沉积构型及储层质量差异研究:以西非某深水研究区为例[D]. 北京:中国石油大学(北京),2013:25-59.

    Lin Yu. Research on depositional architecture and reservoir quality difference of turbidity channel in submarine fan: A case of one deepwater research area, West Africa[D]. Beijing: China University of Petroleum (Beijing), 2013: 25-59.
    [25] 蔺鹏,吴胜和,张佳佳,等. 尼日尔三角洲盆地陆坡逆冲构造区海底扇分布规律[J]. 石油与天然气地质,2018,39(5):1073-1086.

    Lin Peng, Wu Shenghe, Zhang Jiajia, et al. Distribution of submarine fans in the thrust fault zone of continental slope, Niger Delta Basin[J]. Oil & Gas Geology, 2018, 39(5): 1073-1086.
    [26] 于水,李涛,胡望水,等. 尼日尔三角洲盆地泥收缩构造发育特征及对沉积的控制[J]. 海相油气地质,2017,22(4):53-60.

    Yu Shui, Li Tao, Hu Wangshui, et al. Contractional structure in muds: Pattern, evolution, and the control on the deposition of Niger Delta Basin[J]. Marine Origin Petroleum Geology, 2017, 22(4): 53-60.
    [27] 蔺鹏,吴胜和,张佳佳,等. 尼日尔三角洲盆地深水区逆冲构造演化特征[J]. 海相油气地质,2019,24(1):85-96.

    Lin Peng, Wu Shenghe, Zhang Jiajia, et al. Characteristics and evolution of compressional structure in deep-water, Niger Delta Basin[J]. Marine Origin Petroleum Geology, 2019, 24(1): 85-96.
    [28] Zhang J J, Wu S H, Fan T E, et al. Research on the architecture of submarine-fan lobes in the Niger Delta Basin, offshore West Africa[J]. Journal of Palaeogeography, 2016, 5(3): 185-204.
    [29] Zhang J J, Wu S H, Hu G Y, et al. Sea-level control on the submarine fan architecture in a deepwater sequence of the Niger Delta Basin[J]. Marine and Petroleum Geology, 2018, 94: 179-197.
    [30] Gong C L, Wang Y M, Hodgson D M, et al. Origin and anatomy of two different types of mass-transport complexes: A 3D seismic case study from the northern South China Sea margin[J]. Marine and Petroleum Geology, 2014, 54: 198-215.
    [31] 张佳佳,吴胜和,范廷恩,等. 海底扇水道储层参数建模新思路:以西非A油田为例[J]. 石油与天然气地质,2017,38(2):407-418.

    Zhang Jiajia, Wu Shenghe, Fan Ting’en, et al. New method for reservoir petrophysical modeling of submarine fan channels: A case from oilfield A in West Africa[J]. Oil & Gas Geology, 2017, 38(2): 407-418.
    [32] 赵晓明. 西非深水海底扇储层表征与建模[D]. 北京:中国石油大学(北京),2011:34-83.

    Zhao Xiaoming. Reservoir characterization and modeling of deep water submarine fan for West Africa[D]. Beijing: China University of Petroleum (Beijing), 2011: 34-83.
    [33] 蔺鹏,吴胜和,王高飞,等. 陆坡海底水道类型与沉积构型模式:以尼日尔三角洲盆地的深水研究区为例[J]. 石油学报,2022,43(8):1132-1144.

    Lin Peng, Wu Shenghe, Wang Gaofei, et al. Types and sedimentary structure model of submarine channels on continental slope:A case study of a deepwater study area in Niger Delta Basin[J]. Acta Petrolei Sinica, 2022, 43(8): 1132-1144.
    [34] 侯云超,樊太亮,李一凡,等. 盐构造与深水重力流的相互作用及响应:以墨西哥湾Sureste盆地中新统为例[J]. 沉积学报,2022,40(1):22-33.

    Hou Yunchao, Fan Tailiang, Li Yifan, et al. Interactions and responses between salt structures and deep water gravity flow: A case study from the Miocene strata in the Sureste Basin, gulf of Mexico[J]. Acta Sedimentologica Sinica, 2022, 40(1): 22-33.
    [35] 蔡露露,谢晓军,李建平,等. 深水沉积差异及其对油气分布影响:以尼日尔三角洲盆地东西部深水扇为例[J]. 沉积学报,2022,40(1):229-243.

    Cai Lulu, Xie Xiaojun, Li Jianping, et al. Influence of different modes of deep-water sedimentation on oil and gas distribution: A case study of deep-water fans in eastern and western Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 229-243.
    [36] Gervais A, Savoye B, Mulder T, et al. Sandy modern turbidite lobes: A new insight from high resolution seismic data[J]. Marine and Petroleum Geology, 2006, 23(4): 485-502.
    [37] 张佳佳,吴胜和. 海底扇朵叶沉积构型研究进展[J]. 中国海上油气,2019,31(5):88-106.

    Zhang Jiajia, Wu Shenghe. Research progress on the depositional architecture of submarine-fan lobes[J]. China Offshore Oil and Gas, 2019, 31(5): 88-106.
    [38] 陈书平,王春修,肖华,等. 尼日尔三角洲新生代褶皱作用及相关的油气圈闭[J]. 高校地质学报,2013,19(2):355-363.

    Chen Shuping, Wang Chunxiu, Xiao Hua, et al. Folding of the Niger Delta in the Cenozoic and its related traps[J]. Geological Journal of China Universities, 2013, 19(2): 355-363.
    [39] 何仕斌,张功成,米立军,等. 南海北部大陆边缘盆地深水区储层类型及沉积演化[J]. 石油学报,2007,28(5):51-56.

    He Shibin, Zhang Gongcheng, Mi Lijun, et al. Reservoir type and sedimentary evolution in the continental margin deepwater area of the northern South China Sea[J]. Acta Petrolei Sinica, 2007, 28(5): 51-56.
    [40] Jolly B A, Lonergan L, Whittaker A C. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger Delta[J]. Marine and Petroleum Geology, 2016, 70: 58-76.
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(78) PDF downloads(27) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-06-10
  • Revised:  2022-10-22
  • Accepted:  2022-11-01
  • Published:  2024-10-10

Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin

doi: 10.14027/j.issn.1000-0550.2022.126
Funds:

National Science and Technology Major Project 2011ZX05030-005-02

Abstract: Objective Continental slopes have become a major focus in petroleum exploration because of their enormous sediment and hydrocarbon potential. Research on the geomorphic evolution of continental slopes contributes to deep-water sedimentology and petroleum exploration. This paper focused on the abundant terrigenous supply of a continental slope in a delta reformed passive continental margin basin. A new methodology for the restoration of ancient slope geomorphic evolution based on the principle of depositional architecture was discussed. Methods Taking a study area on a continental slope in Niger Delta Basin as an example, seismic, logging, and core data were comprehensively applied to reveal the geomorphic evolution characteristics of the continental slope based on the spatio-temporal evolution of depositional architecture in 13 sequences. Results The geomorphic evolution of the study area can be divided into 2 stages. In stage 1,study area transformed from an abyssal plain to continental slope,and the landform was unrestricted. The geomorphic evolution in this stage was driven by the progradation of large deltas. The geomorphic evolution in stage 2 included 3 periods dominated by thrust faults,mud-diapirs,and sedimentation. The landform evolved gradually from restricted to semi-restricted and then to the present non-restricted type. The geomorphic evolution in stage 2 was controlled by gravity sliding. During the thrust faulting,the activity intensity of the underlying flowing mudstone was limited,and the landform was controlled by thrust faults. The study area was located in the remote thrust province of a gravity sliding system. During the mud-diapir period,the intensity of diaper activity increased significantly and was able to change the geomorphic characteristics independently. As a result,the topography of study area began to transform from a thrust to mud-diapir province. Conclusions The gravity sliding structural system was driven by sedimentary processes,and its spatial combination and evolution characteristics were similar to sedimentary facies. The adjacent extensional,mud-diapir and thrust province were closely related in genesis,which was similar to a sequential sedimentary facies. Therefore,the vertical superposition relationship of different structural activities indicated the macro trend of the continental slope advancing seaward contemporaneously. In conclusion,the spatio-temporal evolution characteristics of the gravity flow depositional architecture in the typical deep-water study area can provide important evidence for the restoration of paleogeomorphic evolution of a deep-water continental slope.

LIN Peng, WU ShengHe. Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1592-1606. doi: 10.14027/j.issn.1000-0550.2022.126
Citation: LIN Peng, WU ShengHe. Geomorphic Evolution of a Continental Slope in a Delta Reformed Passive Continental Margin Basin: A case study of a deep-water zone in the Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1592-1606. doi: 10.14027/j.issn.1000-0550.2022.126
  • 陆坡是连接大陆架与深海平原的陡峭海底区域,全世界陆坡总面积仅占海洋总面积的6%,然而陆坡沉积物总量却占海洋总沉积物的40%[12]。陆坡区因含有丰富的油气资源而受到广泛关注。被动陆缘是由于大陆的张裂、破裂以及洋底扩张而形成的受生长断层控制的宽阔的大陆边缘,被动陆缘盆地是全球油气资源最富集的沉积盆地[3]。随着工程技术水平的不断发展,被动陆缘盆地油气勘探的重点已逐渐由浅水陆架转移至陆坡深水区[45]

    被动陆缘陆坡地貌形态的演变具有渐变性和累积性特征,受到海平面升降、构造活动、沉积、侵蚀等综合作用的影响[67]。明确陆坡地貌演化特征(坡度,起伏形态等)能够助力于深水沉积学研究和油气勘探。由于陆坡区存在宏观地形坡度趋势,在陆相及海相滨岸、陆架沉积环境中应用广泛的基于等时地层厚度的相对古地貌恢复法难以直接应用于陆坡环境。另一方面,在被动大陆边缘漫长的演化过程中,不同地质历史时期陆坡的位置与地貌形态往往不断改变。故仅通过对现今陆坡的观测无法确定古陆坡的位置和形态。现有研究表明,基于地震资料的陆架坡折迁移轨迹法是研究古陆坡地貌演化特征的有效方法[89]。但由于不同地区陆坡形态的差异性,大陆架与上陆坡之间并不总是存在清晰可辨的拐点,故此方法仅适用于可识别出明显坡折迁移轨迹的陆坡,具有一定的应用局限性[10]。同时,在构造活动作用下形成的局部隆起和微盆地无疑会进一步增加陆坡地貌演化过程的复杂性[11]

    三角洲型被动陆缘盆地系指被大型三角洲强烈改造的被动陆缘盆地,强物源供给条件导致沉积作用在该类盆地的演化过程中始终占据主导地位[3]。在大型三角洲进积引发的重力滑动作用下,该类盆地陆坡区普遍发育逆冲断层和泥底辟构造,导致陆坡地貌演化过程兼具“渐变性”和“突变性”[1213]。逆冲/底辟构造使陆坡深水区经历了复杂的地貌演化过程并表现出多变的地层结构。以尼日尔三角洲盆地为例,在陆架坡折带形态和局部构造活动改造的综合影响下,该盆地上陆坡处难以识别出清晰可辨的陆架坡折迁移轨迹,故陆架坡折轨迹法并不适用。

    沉积构型系指不同级次沉积单元的几何形态、规模、方位及空间上的叠置关系[14]。陆坡深水沉积构型的时—空演化特征是深水沉积过程对古地貌(坡度、起伏形态)与海平面升降等因素的综合响应与反馈,蕴含着记录陆坡地貌演化过程的重要信息[15]。据此,本文以尼日尔三角洲盆地陆坡处受到构造活动强烈改造的某深水研究区为例,综合应用三维地震、测井和岩心资料,针对中新统—第四系13个层序内部的重力流沉积体系开展地震地貌学与沉积构型研究,明确沉积构型的时—空演化规律并以此为依据反演陆坡的地貌演化特征与平面迁移趋势,探索基于沉积构型原理的古陆坡地貌演化特征研究方法,以期助力于深层古陆坡油气勘探。

  • 尼日尔三角洲盆地是世界上最大的三角洲型被动陆缘盆地之一,位于非洲板块西部[16]。自1993年起,中石化、中石油和中海油陆续参与该盆地的勘探开发,是我国全球油气战略的重要组成部分[12]。尼日尔三角洲盆地的形成开始于侏罗纪以来超级大陆的裂解,在St. Helena地幔柱作用下西非几内亚湾地区裂解并形成三叉裂谷[1720]。尼日尔三角洲盆地位于该三叉裂谷西南支和东南支的叠合部位(图1a),在裂谷三联点体系的基础上逐步形成[12,19]。裂谷东北支停止扩张后形成贝努埃拗拉谷,它面向海洋开口,向非洲大陆内部呈楔状收敛(图1a),成为大陆水系的泄水口,也是始新世以来全球海平面下降背景下陆源碎屑沉积物进入大陆边缘海的通道[2021]图1b)。其供源下形成的尼日尔三角洲强烈改造了被动陆缘盆地原有的结构。

    Figure 1.  Geological outline of study area (after references [12,21⁃22])

    在大型高建设性三角洲引发的重力滑动作用下,尼日尔三角洲盆地自北向南依次发育伸展构造区、泥底辟构造区、内褶皱逆冲区、滑脱褶皱区和外褶皱逆冲区[22]。研究区位于尼日尔三角洲盆地南部下陆坡,水深1 000~2 000 m,面积约1 500 km2,距离尼日利亚海岸150~190 km,处于滑脱褶皱区和外褶皱逆冲区交界处(图1c,d)。

  • 尼日尔三角洲盆地的主体由白垩系—第四系组成[23]。研究区新生界由下部Akata组和上部Agbada组两套岩性地层单元组成(图1e)。其中,Akata组为富含有机质的海相塑性泥岩,由于欠压实及烃类生成而处于超压状态;Agbada组主要由深水重力流沉积组成[19]

    尼日尔三角洲盆地下陆坡深水区新生界Agbada组内部可识别出一明显的大型不整合面,其下伏地层近等厚,而上覆地层则明显因受到逆冲断层活动的影响而表现出向构造高部位上超减薄的特征。根据深水钻探成果与全球海平面升降曲线[21],该界面普遍被认为指示了下陆坡逆冲断层活动的开始,为超层序界面,并与距今约10.5 Ma的全球二级海退事件相对应(图1b,e)。该界面将研究区中新统—第四系的Agbada组划分为TB2和TB3两个超层序[21]图1b,e)。下部TB2超层序厚度分布稳定,可根据测井曲线的旋回性特征将其进一步细分为TB2.3~TB2.6四个层序[24]图2a)。相比之下,上部TB3超层序则普遍存在向构造高部位的减薄,综合地震同相轴终止关系(下部侵蚀,上部底超)以及界面两侧地震相特征的显著差异,可在TB3内部识别出8个层序界面,将TB3细分为9个层序[25](TB3.1~TB3.9)(图2b,c)。据此建立了研究区目的层的层序地层格架。

    Figure 2.  Identification characteristics of sequence boundaries in the study area (modified from references [24⁃25], see Fig. 1d for location of well W1 and well W2)

  • 研究区在陆坡重力滑动作用下发育逆冲断层和泥底辟背斜[26]图1d)。逆冲断层主要集中于研究区南部,各断层均沿Akata组泥岩内部滑脱面向SSW方向逆冲,切穿上覆的Agbada组地层(图1e)[27]。泥底辟背斜发育于研究区中部,是形成于底辟作用下的横弯褶皱(图1d)。

  • 研究区全区覆盖良好的三维地震资料,总面积约为1 500 km2图1d),测线间距均为12.5 m,垂向采样率3 ms。地震资料在目的层段主频约40 Hz,优势频宽10~70 Hz,按照地震波速3 000 m/s估算垂向分辨率约20 m。另一方面,本研究区探井/评价井/开发井主要集中于东部X区,西侧Y区仅有零星探井(图1d)。Y区因受到重力滑动构造的强烈改造而成为本文主要研究对象。而X区内丰富的测井曲线(SP、GR、RT、AC等)和岩心资料可用于标定三维地震,为Y区基于地震相/地震属性的深水沉积体系的识别提供依据。整体上,研究区目前拥有的岩心、测井和地震资料能够实现对深水沉积体系的识别与刻画。

    通过对岩心资料的详细描述划分岩心相,确定研究区内主要沉积相类型。根据地震反射特征划分地震相类型,结合岩心、测井资料实现对不同类型地震相的标定,参考前人研究成果明确不同类型沉积体系的地震响应特征。利用三维地震地貌学方法,以层序界面作为约束,综合采用均方根振幅和相干属性切片实现对各层序内部沉积体系的刻画。

    为了定量刻画重力流沉积构型的分布与演化特征,本次研究综合使用了以下四种参数:沉积体系数目、水道弯曲度、朵叶长宽比和朵叶覆盖面积。(1)沉积体系数目:系指各层序内发育的不同类型沉积体系数目,反映该时期沉积体系发育的倾向性。(2)水道弯曲度:测量方法参考陆相曲流河的弯曲度测量方法,即以研究区范围内水道段的总长度与不考虑水道高频侧向摆动的流向趋势线长度之比作为海底水道的弯曲度。若同一层序内发育多条水道,则取平均值作为该层序的水道弯曲度。另外,为避免“污染”统计数据,对于平面形态不甚清晰的水道只进行识别而不测量弯曲度。(3)朵叶长宽比:为顺物源方向与垂直物源方向上朵叶展布范围的比值。若同一层序内发育多个朵叶,则取平均值作为该层序的朵叶长宽比。(4)朵叶覆盖面积:为研究区范围内被朵叶覆盖区域的总面积。

  • 根据岩性、沉积结构和沉积构造,前人在本研究区共识别出13种不同的岩石相类型,并分别探讨了其成因机制[24,2829]。出于本次研究的需要,笔者在现有研究成果的基础上,从成因的角度将研究区内的岩心相归纳为三类。

    1) 滑动、滑塌、碎屑流成因的岩心相

    该类岩心相整体为深灰—黑色,以内部含有大量泥质碎屑为典型识别特征。泥质碎屑粒径变化较大(从1 cm到超过岩心直径),磨圆性较差,可表现出近直立特征,由砂质/泥质基质支撑(图3a,b)。这些特征一致表明沉积物以半固结态整体搬运并沉积。该类岩心相通常被解释为块体搬运沉积(mass transport deposits,MTDs),一般不能形成有效储层,但由于其低渗透率特征而可作为渗流隔挡体控制油气分布[30]。MTDs主要发育于水道、朵叶体系内,与富砂质水道、朵叶沉积共生。

    Figure 3.  Core features of deep⁃water depositional units in the study area (after references [28⁃29])

    2) 浊流成因岩心相

    该类岩心相根据粒度可分为粗砂岩、中砂岩、细砂岩和粉砂岩,是研究区内最主要的岩心相类型[24]。其中,砂岩主要为块状构造(图3c~f);粉砂岩普遍富含泥质,可见波状或平行的薄纹层(图3g)。浊流成因的岩心相通常被解释为水道或朵叶沉积,因具有较高的砂质含量而被认为是深水环境下的良好储层。

    3) 深水披覆沉积成因岩心相

    该类岩心相通常为黑色或深灰色,见水平层理或无明显沉积构造(图3h),可解释为深水环境下的泥质披覆沉积,因具有较低的孔隙度和渗透率而可作为盖层。

  • 根据同相轴终止关系以及地震反射结构、构型、外形,在研究区内识别出以下三种地震相。

    1) 地震相1:中—强振幅、下切—充填反射地震相(水道)

    该类地震相具有顶平底凸的下切—充填地震反射外形,底部侵蚀接触,内部充填物为中—强振幅地震反射(图4a)。测井资料显示,研究区内地震相1具有如下响应特征:自然伽马曲线具有较高的幅度,底部为突变接触,整体上为“钟形”(图4a)。表明这类地震相主要为相对富砂质沉积[29,3132],对应浊流成因的岩心相。平面上呈弯曲条带状展布(图4b),在相干属性平面图中具有低相干边界,在振幅类属性平面图中对应强振幅条带(图4b)。该类地震相可解释为由重力流下切侵蚀大陆斜坡而形成的海底水道[33]

    Figure 4.  Seismic⁃well tie characteristics of depositional units in the study area (see Fig. 1d for location of Fig. 4b, d) (after references [28,31])

    2) 地震相2:强振幅、连续丘状反射地震相(朵叶)

    以具有丘状地震反射外形,内部为平行、强振幅、高连续性反射为典型识别特征(图4c)。地震相2所对应的测井响应特征为自然伽马和电阻率曲线幅度均较大,为锯齿状“箱形”或“钟形”(图4c)[2829,34]。对应浊流成因的岩心相。平面上通常为扇状,在均方根振幅属性平面图上对应扇形连片强振幅区(图4d)。解释为由重力流沉积物堆积而形成的朵叶。其主体为相对富砂质的沉积物,内部由泥岩夹层分隔,常被认为是高产能、高采收率的深水储层。

    3) 地震相3:弱振幅、席状平行反射(深水泥质沉积)

    该类地震相在剖面上为席状、平行、高连续性、弱振幅高频反射,与下伏地层为整合接触;在测井曲线上,GR曲线为高值位于基线处[11,35];对应深水披覆沉积成因岩心相,解释为深水泥质沉积。深水泥质沉积在研究区内广泛发育,常被重力流水道侵蚀,在均方根振幅属性图上对应低值背景。

  • 在明确研究区深水沉积体系类型和识别特征的基础上,综合TB2.3~TB3.9层序的地震属性(图5)与地层厚度(图6)平面图,可将目的层段各层序内重力流沉积体系的分布特征归纳为以下三种样式。

    Figure 5.  Distribution of deep⁃water depositional systems of TB2.3⁃TB3.9(modified from references [16,24⁃25], see Fig. 1d for location of Fig.5)

    Figure 6.  Relative paleogeomorphology of TB2.3⁃TB3.9 based on stratigraphic thickness on time section (see Fig.1d for location of Fig.6)

  • 沉积体系在研究区内均匀分布,未集中于某一特定部位。相对应地,层序地层厚度在不同部位亦不存在明显的差异。在此基础上,根据水道、朵叶两类沉积体系发育的倾向性可进一步划分出以下三种亚类。

    1) 朵叶主导型

    TB2.3~TB2.5层序内沉积体系均主要由1~2个大型连片分布的朵叶组成,朵叶面积多介于400~600 km2,朵叶总覆盖面积均在500 km2以上(图5k~m)。仅TB2.4层序可在朵叶间观测到一条呈弯曲条带状的水道,其弯曲度为2.66。沉积物源均来自研究区东北方向,各层序时间厚度分布稳定,平面起伏不足100 ms(图6k~m)。

    2) 混合型

    TB2.6和TB3.1层序内沉积体系由水道和朵叶复合而成。朵叶平面展布面积远小于朵叶主导型,研究区内朵叶总覆盖面积18~110 km2图5i,j)。两层序内均可观测到2~3条呈弯曲条带状的水道,弯曲度介于1.38~1.94。层序时间厚度较为稳定,平面起伏小于150 ms(图6i,j)。

    3) 水道主导型

    TB3.8和TB3.9层序内沉积体系均由水道组成。与前两种类型相比,水道具有相对顺直的平面形态,弯曲度最低,介于1.15~1.16(图5a,b)。研究区范围内各层序时间厚度相对稳定,平面起伏100~200 ms(图6a,b)。

  • TB3.2~TB3.4层序内沉积体系集中分布于研究区北部、东部(图5f~h)。与之相对应,沉积地层亦主要集中于研究区北部,西部、南部地层明显厚度较薄甚至大面积缺失(图6f~h)。振幅属性图显示,各层序内均发育多个朵叶,以及零星出现、于近物源一侧与朵叶相连的弯曲条带状水道。各层序内朵叶数量均在4个以上,朵叶面积介于12~130 km2,朵叶总覆盖面积170~400 km2。与朵叶相连的水道总体上相对顺直,弯曲度介于1.16~1.24。

  • TB3.5~TB3.7层序内沉积体系明显于研究区东、西两侧发生分异(图5c~e),沉积地层亦集中于东、西两侧,中部地层厚度整体较薄甚至大面积缺失(图6c~e)。东、西两侧的深水沉积体系均由水道—朵叶复合而成,研究区北部沉积体系侧向宽度较窄,主要为水道沉积,向南则逐渐展宽并于水道末端或侧缘发育朵叶沉积。总体来看,水道、朵叶发育程度大致相同,朵叶规模较小,面积介于30~130 km2,朵叶总覆盖面积介于40~210 km2,水道平面形态相对顺直,弯曲度介于1.12~1.25。

  • 研究区自始新世至今一直处于深水环境[24],结合岩心相分析结果确定目的层段主要发育深水重力流沉积。在重力驱动下,深水重力流总是优先沉积于地貌低部位,故等时地层厚度较薄处通常对应古地貌高部位。可见,重力流沉积的差异性分布与局部聚集对同期地貌特征具有重要指示作用。另一方面,由于目的层段沉积过程中研究区未出露地表,因而不会遭受大面积的区域性风化剥蚀,仅存在局部重力流下切侵蚀下伏地层的现象。根据下切谷两侧地层厚度趋势容易估算侵蚀作用发生前的原始地层厚度。因此,综合分析沉积体系平面分布特征、层序地层厚度减薄区展布范围和构造解析成果,能够明确各层序沉积期的古地貌特征。

    为了定性反映不同阶段地貌对重力流沉积控制作用的差异,沿用前人术语,按照控制程度由强至弱将地貌划分为限制型、半限制型和非限制型三类[28,3637]。限制型地貌能够阻止重力流沉积物的继续搬运,迫使重力流集中于特定部位并形成以朵叶为主体的沉积体系。半限制型地貌阻碍重力流沉积物的搬运,使沉积体系展布方向发生偏移并集中分布于隆起区侧缘。非限制型地貌对重力流的空间分布与沉积体系类型均无明显的控制作用。

    如前所述,研究区中新世至今各层序内沉积体系的分布样式具有明显的阶段差异性。TB2.3~TB3.1层序内沉积体系为均匀分布型,TB3.2~TB3.4层序内重力流沉积集中于北部、东部;TB3.5~TB3.7层序内沉积体系表现出明显的东、西分异性,TB3.8、TB3.9层序内重力流沉积再次呈现出均匀分布特征(图5)。

    TB3.2~TB3.4层序厚度均向研究区南部整体减薄。减薄区在平面上为NWW—SEE向展布的条带且具有薄—厚相间分布的特征(图6f~h),与逆冲断层走向近似一致(图1d)。地震剖面显示,TB3.4及其下伏地层均被逆冲断层错断(图1e)。其中,TB3.2~TB3.4层序均存在下盘地层厚度明显大于上盘的特征。据此推知逆冲断层活动时间主要集中于TB3.2~TB3.4层序沉积期。根据全球海平面升降曲线中对应旋回的地质年龄,推测TB3.2~TB3.4的时间范围为8.2~4.2 Ma。前人研究成果表明,晚中新世托尔托纳晚期—上新世赞克勒期(约11.63~3.60 Ma)是研究区内逆冲断层剧烈活动的时期[26,38]。另一方面,厚度减薄区近物源一侧大量发育朵叶沉积(图5f~g),佐证了其对顺陆坡搬运的重力流具有阻挡、限制作用。综上,将该时期研究区南部垂直物源方向的地层厚度减薄区解释为逆冲断层活动下形成的断背斜。

    TB3.5~TB3.7层序厚度向研究区中部明显减薄,减薄区在平面上大致为NE—SW向展布的椭圆形(图6c~e)。下伏Akata组塑性泥岩具有流动性,于研究区中部集中形成泥底辟核(图1d,e)。泥底辟核平面展布范围与TB3.5~TB3.7层序厚度减薄区近似一致。地震剖面显示,TB3.5~TB3.7层序均因上超导致地层厚度向研究区中部大幅减薄(图1e),表明沉积过程中存在持续性局部隆起。另一方面,减薄区东、西两侧均发育水道与规模较小的朵叶(图5c~e),表明其能够将重力流限制于两侧。综上,将该阶段研究区中部的地层厚度减薄区解释为具有同沉积性质的泥底辟背斜[27]

    TB2.3~TB3.1、TB3.8~TB3.9层序内均未见重力流沉积局部集中且地层厚度亦不存在明显局部减薄,表明沉积期古地貌对重力流无显著的限制作用且不存在局部地貌高部位。

    综上所述,TB3.2~TB3.4层序地貌类型为逆冲断层主导限制型,TB3.5~TB3.7层序沉积期研究区为泥底辟主导半限制型地貌,目的层段其余层序均对应非限制型地貌。

  • 前已述及,虽然TB2.3~TB3.1、TB3.8~TB3.9层序内部重力流沉积均形成于非限制型地貌环境,但沉积体系分布样式却存在明显的阶段性差异。TB2.3~TB2.5层序为朵叶主导均匀分布型,TB2.6和TB3.1为水道—朵叶混合均匀分布型,而TB3.8~

    TB3.9层序则为水道主导均匀分布型。

    TB2.3~TB2.5层序主要发育大面积连片展布的低长宽比朵状朵叶(图5k~m),由重力流沉积物因能量减小快速堆积而成,表明该时期地形坡度较缓。零星可见具有极高弯曲度的水道反映重力流容易发生侧向摆动(图5l),从另一个角度证明重力对沉积作用的影响很小且地貌侧向限制性较弱。具有这些特征的重力流沉积体系一般被解释为盆底扇[28,39],反映这一时期研究区处于深海平原环境。TB2.6和TB3.1层序内沉积体系由发育频率相近的中等弯曲度水道和具有较大长宽比的朵叶组成(图5i,j)。朵叶形态沿搬运方向的显著伸长和水道侧向摆动能力的降低,共同表明重力对沉积物的作用有所增强,反映地形坡度的增加。前人将具有这些特征的重力流沉积体系解释为斜坡扇[28,39],证明研究区此时已经开始演变为陆坡环境。TB3.8~TB3.9层序主要发育低弯度、相对顺直的水道(图5a,b),表明重力流沉积物具有较强的能量且主要以沉积过路的形式向深海方向搬运。反映研究区此时的地形坡度与TB2.6和TB3.1层序相比进一步增大。

    深水沉积学研究表明,陆坡—深海平原环境下的重力流沉积过程与地形坡度密切相关。地形平缓处重力流能量较低,容易形成朵叶沉积;而在坡度较大处,重力流能量充足,通常以沉积过路的形式发育水道沉积。沉积构型研究表明,坡度对深水沉积单元的几何形态特征具有重要控制作用。在地形平缓的深海平原环境下,朵叶常具有低长宽比的朵状平面形态;随着坡度的增加,朵叶的长宽比增大,可表现出顺搬运方向延长的“帚状/梭状”平面形态[28]。随着坡度的进一步增加,水道逐渐成为沉积体系的主体,其弯曲度与坡度间存在负相关关系。

    对各层序水道、朵叶沉积体系数目和几何形态学参数的统计结果显示,从TB2.3至TB3.9层序,朵叶发育程度降低而水道具有与之相反的趋势,二者表现出此消彼长的相对数量关系(图7)。TB2.3~TB2.5层序主要发育朵叶;TB3.1层序主要发育水道,TB3.2~TB3.5层序内沉积体系由多个小型朵叶组成;TB3.7~TB3.9层序内沉积体系组成以水道为主。研究区范围内各层序朵叶覆盖面积与水道弯曲度均表现出整体递减的趋势(图7)。这些证据共同证明了研究区中新世至今的地貌演化过程具有地形坡度增加的宏观趋势。另一方面,结合古地貌特征,TB3.2~TB3.4层序朵叶数量较多但规模较小,反映了逆冲微盆地对重力流的捕集作用。

    Figure 7.  Evolution characteristics of deep⁃water depositional architecture units in the study area

  • 目的层段(TB2.3~TB3.9)根据研究区范围内各层序朵叶覆盖面积的变化趋势可划分为两个阶段,其一为TB2.3~TB3.1,朵叶总覆盖面积为单调递减的半旋回;其二为TB3.2~TB3.9,朵叶总面积表现为先增后减的完整旋回(图7)。这表明研究区地貌演化过程经历了两个不同阶段。阶段1反映了地形坡度单调递增的过程,研究区由深海平原逐步演化为陆坡。重力流沉积体系的均匀分布特征表明地貌类型始终为非限制型。此阶段的地貌演化主要由大型三角洲的进积作用驱动。阶段2包含了先后由逆冲断层、泥底辟、沉积填平补齐主导的地貌演化过程,古地貌由限制型、半限制型逐步演变为现今的非限制型,限制强度先增后减。这一阶段的地貌演化主要由大陆边缘重力滑动作用驱动。

    在重力滑动作用下,尼日尔三角洲盆地向岸一侧与向深海一侧分别发育了伸展构造区和逆冲构造区,在位于二者之间的泥底辟构造区的调节下,不同构造区的位移量相互平衡构成了完整的体系[38]。特别的是,泥底辟构造并非仅发育于泥底辟构造区。在伸展构造区和逆冲构造区,由于断层活动导致上覆沉积负载的差异性分布,流动性泥岩容易聚集于断层产生的构造高部位形成底辟核,但这种底辟构造受到断层分布的控制且活动强度有限,并不会改变断层活动背景下的地貌格局[12]。相对的,在泥底辟构造区,流动性泥岩上拱强度较大,能够刺穿上覆地层或形成穹隆状泥底辟背斜,具备独立改变现有地貌格局的能力[12]。阶段2中,研究区地貌格局经历了由逆冲断层主导向泥底辟主导的转变。阶段2.1为逆冲断层主导期(TB3.2~TB3.4),流动性泥岩仅被动地集中于断背斜核部,地貌格局主要受控于逆冲断层活动(图6f~h、图7)。表明泥底辟活动强度有限,研究区属于重力滑动体系的远缘逆冲构造区。阶段2.2为泥底辟主导期(TB3.5~TB3.7),研究区中部由于泥岩局部集中而形成了穹隆状泥底辟背斜,隆起区面积与逆冲断层主导期相比显著增加(图6c~e、图7)。这表明泥底辟活动强度大幅增强,不再完全受制于断层,而是具备了独立改造地貌格局的能力。可见这一时期研究区内的构造特征已经更为接近于泥底辟构造区。综上,随着时间的推移,研究区地貌特征由逆冲构造区向泥底辟构造区演化。

    尼日尔三角洲盆地的构造活动由大型三角洲持续进积驱动,属于由沉积作用驱动的构造活动,并因此表现出与沉积体系相似的空间组合与演化特征。相序定律强调在平面上相邻的相和相区能够在垂向上相互叠加。在大型三角洲控制下,尼日尔三角洲盆地从陆向海依次发育在平面上紧邻的伸展构造区、泥底辟构造区和逆冲构造区,三者之间存在密切的成因关联,这种组合关系与具有排序特征的沉积相(例如:后滨、前滨、临滨,三角洲平原、三角洲前缘、前三角洲)非常相似。排序类沉积相由于相互之间存在固定的排列顺序,导致其垂向叠加序列可作为识别海进/海退的依据。

    前人针对尼日尔三角洲盆地前缘逆冲构造区的研究表明,逆冲断层的形成顺序整体上为前展式[22,40]。即逆冲断层的分布区域逐渐向深海方向迁移,导致早期邻近逆冲构造区、未被构造活动波及的区域与晚期逆冲构造区“叠加”(图8)。而本研究区阶段2中地貌演化由逆冲断层主导逐渐演变为泥底辟主导,即早期逆冲构造区与晚期泥底辟构造区相互叠加(图8)。这种垂向叠加关系与排序类沉积相的垂向相序组合序列相似,因此为TB3.2~TB3.7层序沉积期陆坡向深海方向的推进与海退过程提供了证据。而陆坡的持续推进无疑会使下陆坡研究区表现出地形坡度随着时间的推移而逐渐增加的整体趋势。另一方面,现有研究表明,尼日尔三角洲盆地远缘逆冲构造区可进一步细分为内褶皱逆冲区、滑脱褶皱区和外褶皱逆冲区(图1c)[22,38],这种复杂的构造样式分布、组合特征也佐证了不同期次重力滑动体系的平面错位与垂向叠加关系。

    Figure 8.  Mode graph illustrating the continental slope evolution of the Niger Delta Basin

  • (1) 深水沉积构型的时—空演化特征揭示研究区自中新世至今经历了一个地貌限制性先增后减的过程,且地形坡度具有单调递增的宏观趋势。地貌演化过程包括两个阶段。阶段1(TB2.3~TB3.1)反映了由深海平原逐步演变为陆坡的过程,地貌类型始终为非限制型。此阶段的地貌演化由大型三角洲的进积所驱动。阶段2(TB3.2~TB3.9)包含了先后由逆冲断层、泥底辟、沉积填平补齐主导的演化过程,地貌由限制型、半限制型逐步演变为现今的非限制型,限制强度先增后减。地貌演化主要由大陆边缘重力滑动作用驱动。

    (2) 阶段2中,研究区先后经历了由逆冲断层和泥底辟主导的两期构造活动。逆冲断层主导期(TB3.2~TB3.4),地貌形态特征受控于断层活动,研究区处于重力滑动体系的远缘逆冲构造区。泥底辟主导期(TB3.5~TB3.7),底辟活动强度大幅增加并具备了独立改造地貌格局的能力。研究区地貌特征由逆冲构造区向泥底辟构造区转化。

    (3) 重力滑动构造由沉积作用驱动,表现出与沉积体系相似的空间组合与演化特征。从陆向海依次发育在平面上紧邻的伸展构造区、泥底辟构造区和逆冲构造区,三者之间存在密切的成因关联,这与具有排序特征的沉积相非常相似,故不同期次构造活动的垂向叠加特征为阶段2中陆坡向深海方向的推进与海退过程提供了证据。而陆坡的持续推进会使下陆坡研究区表现出地形坡度随着时间的推移而增加的整体趋势。

    (4) 重力流沉积体系的空间分布与几何形态学特征对深水古地貌具有指示意义。分析典型深水研究区各层序内的重力流沉积构型时—空演化特征,能够为陆坡古地貌演化过程的恢复提供重要证据。

Reference (40)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return