Advanced Search
Volume 42 Issue 5
Oct.  2024
Turn off MathJax
Article Contents

WANG YuanYuan, GOU SongLin, ZHANG GuoCheng. Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.149
Citation: WANG YuanYuan, GOU SongLin, ZHANG GuoCheng. Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.149

Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front

doi: 10.14027/j.issn.1000-0550.2022.149
Funds:

National Natural Science Foundation of China 42172130

Young Backbone Teachers Training Program of Henan Province 2023GGJS055

  • Received Date: 2022-08-29
  • Accepted Date: 2023-01-10
  • Rev Recd Date: 2022-11-15
  • Available Online: 2023-01-10
  • Publish Date: 2024-10-10
  • Objective The Pearl River Delta front is a complicated sedimentary system controlled by rivers, waves, and tides. Most previous studies focused on the physical and chemical sedimentary characteristics. However, biogenic sedimentary structures are extremely sensitive to the environment; therefore, comprehensive and high resolution research should be conducted. Methods Based on sedimentary and ichnological methods, salinity, turbidity, total organic carbon (TOC), grain size analysis, X-ray scans, and three-dimensional (3D) reconstruction were applied to the modern biogenic sedimentary structures in different microenvironments of the Pearl River Delta front. Results The main results are as follows: (1) The main trace makers are Bivalve clams, Arthropoda hermit crabs, Crustacean crabs, Annelid bitoothed berbera, and chordate mudskippers. (2) The main biogenic traces include climbing tracks, foot tracks, bird tracks and excretion tracks, and burrows, and the main morphology of burrows include Y, L, U, and I-shape. (3) The diversity, abundance, and bioturbation in the tidal channel and island are higher than the interdistributary bay. Conclusions This study perfected the ichnology of the delta front and modern delta sedimentary environment. Moreover, it resolved the high resolution identification of a paleo-delta front sedimentary system.
  • [1] Bann K L, Fielding C R, MacEachern J A, et al. Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia[J]. Geological Society, London, Special Publications, 2004, 228(1): 179-211.
    [2] Gingras M K, Pemberton S G, Saunders T, et al. The ichnology of modern and Pleistocene brackish-water deposits at Willapa Bay, Washington: Variability in estuarine settings[J]. Palaios, 1999, 14(4): 352-374.
    [3] Howard J D, Frey R W. Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah[J]. Canadian Journal of Earth Sciences, 1984, 21(2): 200-219.
    [4] Pemberton S G, Wightman D M. Ichnological characteristics of brackish water deposits[M]//Pemberton S G. Applications of ichnology to petroleum exploration: A core workshop. Tulsa: Socie-ty for Sedimentary Geology, 1992: 141.
    [5] Pemberton S G, MacEachern J A, Frey R W. Trace fossil facies models: Environmental and allostratigraphic significance[M]//Walker R G, James N P. Facies models: Response to sea level change. St. John’s, Newfoundland: Geological Association of Canada, 1992: 47-72.
    [6] Savrda C E, Bottjer D J. Trace-fossil model for reconstructing oxygenation histories of ancient marine bottom waters: Application to Upper Cretaceous Niobrara Formation, Colorado[J]. Palaeo-geography, Palaeoclimatology, Palaeoecology, 1989, 74(1/2): 49-74.
    [7] Seilacher A. Bathymetry of trace fossils[J]. Marine Geology, 1967, 5(5/6): 413-428.
    [8] Taylor A, Goldring R, Gowland S. Analysis and application of ichnofabrics[J]. Earth-Science Reviews, 2003, 60(3/4): 227-259.
    [9] La Croix A D, Dashtgard S E. A synthesis of depositional trends in intertidal and upper subtidal sediments across the tidal–fluvial transition in the Fraser River, Canada[J]. Journal of Sedimentary Research, 2015, 85(6): 683-698.
    [10] Swinbanks D D, Luternauer J L. Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia[J]. Journal of Paleontology, 1987, 61(2): 315-332.
    [11] Swinbanks D D, Murray J W. Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia[J]. Sedimentology, 1981, 28(2): 201-237.
    [12] Abdel-Fattah Z A. Morpho-sedimentary characteristics and generated primary sedimentary structures on the modern microtidal sandy coast of eastern Nile Delta, Egypt[J]. Journal of African Earth Sciences, 2019, 150: 355-378.
    [13] Frihy O E, Dewidar K M. Patterns of erosion/sedimentation, heavy mineral concentration and grain size to interpret boundaries of littoral sub-cells of the Nile Delta, Egypt[J]. Marine Geology, 2003, 199(1/2): 27-43.
    [14] 胡斌,王媛媛,张璐,等. 黄河中下游焦作区段现代边滩沉积中的生物遗迹[J]. 古地理学报,2012,14(5):628-638.

    Hu Bin, Wang Yuanyuan, Zhang Lu, et al. Biogenic traces in modern point bar deposits of the middle-lower reaches of Yellow River in Jiaozuo area, Henan province[J]. Journal of Palaeogeography, 2012, 14(5): 628-638.
    [15] 黄学勇,高茂生,侯国华,等. 现代黄河三角洲南部潮间带及附近海域沉积特征认识与分析[J]. 沉积学报,2021,39(2):408-423.

    Huang Xueyong, Gao Maosheng, Hou Guohua, et al. Recognition and analysis of sedimentary characteristics of the southern intertidal area of Yellow River Delta and adjacent sea area[J]. Acta Sedimentologica Sinica, 2021, 39(2): 408-423.
    [16] 李栓科. 近代黄河三角洲的沉积特征[J]. 地理研究,1989,8(4):45-55.

    Li Shuanke. Sedimentary characteristics in the modern Yellow River Delta[J]. Geographical Research, 1989, 8(4): 45-55.
    [17] 林承焰,姜在兴,董春梅,等. 黄河三角洲沉积环境和沉积模式[J]. 石油大学学报(自然科学版),1993,17(3):5-11.

    Lin Chengyan, Jiang Zaixing, Dong Chunmei, et al. Sedimentary environment and model of the Yellow River Delta[J]. Journal of the University of Petroleum, China, 1993, 17(3): 5-11.
    [18] 彭俊,陈沈良,李谷祺. 末次冰盛期后黄河三角洲潮滩沉积及其环境指示[J]. 海洋地质与第四纪地质,2014,34(2):19-26.

    Peng Jun, Chen Shenliang, Li Guqi. Sedimentary information of tidal flat of the Yellow River Delta after Last Glacial Maximum and its environmental implications[J]. Marine Geology & Quaternary Geology, 2014, 34(2): 19-26.
    [19] 王翠,王媛媛,胡斌. 黄河三角洲潮坪环境现代生物遗迹与物化条件的响应关系[J]. 沉积学报,2023,41(3):748-762.

    Wang Cui, Wang Yuanyuan, Hu Bin. The response relationship between biogenic structures and physicochemical stresses of the Yellow River Deltaic Tidal Flat[J]. Acta Sedimentologica Sinica, 2023,41(3): 748-762.
    [20] 王媛媛,王学芹,胡斌. 黄河三角洲潮坪环境中现代生物遗迹组成与分布特征[J]. 沉积学报,2019,37(6):1244-1257.

    Wang Yuanyuan, Wang Xueqin, Hu Bin. The composition and distribution characteristics of biogenic sedimentary Structures in tidal flat of Yellow River Delta[J]. Acta Sedimentologica Sinica, 2019, 37(6): 1244-1257.
    [21] 袁萍,毕乃双,吴晓,等. 现代黄河三角洲表层沉积物的空间分布特征[J]. 海洋地质与第四纪地质,2016,36(2):49-57.

    Yuan Ping, Bi Naishuang, Wu Xiao, et al. Surface sediments at the subaqueous Yellow River Delta: Classification and distribution[J]. Marine Geology & Quaternary Geology, 2016, 36(2): 49-57.
    [22] 张少同,贾永刚,刘晓磊,等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质,2016,36(6):33-44.

    Zhang Shaotong, Jia Yonggang, Liu Xiaolei, et al. Feature and mechanism of sediment dynamic changing processes in the modern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33-44.
    [23] Ji H Y, Pan S Q, Chen S L. Impact of river discharge on hydrodynamics and sedimentary processes at Yellow River Delta[J]. Marine Geology, 2020, 425: 106210.
    [24] Kong D X, Miao C Y, Borthwick A G L, et al. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011[J]. Journal of Hydrology, 2015, 520: 157-167.
    [25] 白雪莘,张卫国,董艳,等. 长江三角洲全新世地层中潮滩沉积磁性特征及其古环境意义[J]. 沉积学报,2016,34(6):1165-1175.

    Bai Xuexin, Zhang Weiguo, Dong Yan, et al. Magnetic properties of Holocene tidal flats in the Yangtze Delta and their paleoenvironmental implications[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1165-1175.
    [26] 范代读,李从先. 长江三角洲泥质潮坪沉积的韵律性及保存率[J]. 海洋通报,2000,19(6):34-41.

    Fan Daidu, Li Congxian. Lamination and preservation rate of mudflat deposition on the Changjiang Delta[J]. Marine Science Bulletin, 2000, 19(6): 34-41.
    [27] 申江,常华进,曹广超,等. 长江三角洲全新世沉积物光释光测年研究[J]. 盐湖研究,2020,28(4):29-40.

    Shen Jiang, Chang Huajin, Cao Guangchao, et al. OSL dating of Holocene sediments in the Yangtze River Delta[J]. Journal of Salt Lake Research, 2020, 28(4): 29-40.
    [28] 王海邻,王长征,宋慧波,等. 杭州湾庵东滨岸潮间带现代沉积物中的生物遗迹特征[J]. 沉积学报,2017,35(4):714-729.

    Wang Hailin, Wang Changzheng, Song Huibo, et al. Characte-ristic of biogenic traces in the modern sediments of intertidal flat in Andong area, Hangzhou Bay[J]. Acta Sedimentologica Sinica, 2017, 35(4): 714-729.
    [29] 王海邻,胡斌,宋慧波. 山东青岛和日照滨岸潮间带现代生物遗迹组成与分布特征[J]. 古地理学报,2017,19(4):663-676.

    Wang Hailin, Hu Bin, Song Huibo. Composition and distribution characteristics of modern biogenic traces in intertidal flat in Qingdao and Rizhao area, Shandong province[J]. Journal of Palaeogeography, 2017, 19(4): 663-676.
    [30] 胡斌,张白梅,王海邻,等. 现代滦河三角洲沉积中的生物遗迹[J]. 河南理工大学学报(自然科学版),2015,34(2):185-191.

    Hu Bin, Zhang Baimei, Wang Hailin, et al. Neoichnology in modern Luanhe delta deposits[J]. Journal of Henan Polytechnic University (Natural Science), 2015, 34(2): 185-191.
    [31] Gingras M K, MacEachern J A, Dashtgard S E. Process ichnology and the elucidation of physico-chemical stress[J]. Sedimentary Geology, 2011, 237(3/4): 115-134.
    [32] Hong E, Huang T C, Yu H S. Morphology and dynamic sedimentology in front of the retreating Tsengwen Delta, southwestern Taiwan[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2004, 15(4): 565-587.
    [33] 范代读,李从先,陈美发,等. 长江三角洲泥质潮坪沉积间断的定量分析[J]. 海洋地质与第四纪地质,2001,21(4):1-6.

    Fan Daidu, Li Congxian, Chen Meifa, et al. Quantitative analyses on diastems of the mudflat deposits in the Yangtze River Delta[J]. Marine Geology & Quaternary Geology, 2001, 21(4): 1-6.
    [34] 金振奎,高白水,李桂仔,等. 三角洲沉积模式存在的问题与讨论[J]. 古地理学报,2014,16(5):569-580.

    Jin Zhenkui, Gao Baishui, Li Guizai, et al. Problems and discussions about delta depositional models[J]. Journal of Palaeogeography, 2014, 16(5): 569-580.
    [35] 李凯,易旺. 贵州省盘县地区龙潭组沉积特征及展布规律[J]. 天然气技术与经济,2019,13(2):21-24,61.

    Li Kai, Yi Wang. Sedimentary characteristics and distribution laws of Longtan Formation in Panxian county of Guizhou province, China[J]. Natural Gas Technology and Economy, 2019, 13(2): 21-24, 61.
    [36] 张素梅,张玉林,郭亚亚,等. 黄河北煤田潮坪沉积体系及成煤作用[J]. 中国煤炭地质,2014,26(11):23-25.

    Zhang Sumei, Zhang Yulin, Guo Yaya, et al. Tidal flat sedimentary system and coal-forming in Huanghebei coalfield[J]. Coal Geology of China, 2014, 26(11): 23-25.
    [37] 王珊珊. 珠江三角洲和近岸河口海域现代沉积环境及晚更新世以来的环境演变[D]. 青岛:中国海洋大学,2008.

    Wang Shanshan. Present sedimentary environments and environment evolvement since Late Pleistocene for the Pearl River Delta and intracoastal estuary and sea area[D]. Qingdao: Ocean University of China, 2008.
    [38] 吴超羽,韦惺. 从溺谷湾到三角洲:现代珠江三角洲形成演变研究辨析[J]. 海洋学报,2021,43(1):1-26.

    Wu Chaoyu, Wei Xing. From drowned valley to delta: Discrimination and analysis on issues of the formation and evolution of the Zhujiang River Delta[J]. Haiyang Xuebao, 2021, 43(1): 1-26.
    [39] 袁菲,何用,许劼婧. 近期珠江三角洲地形演变特征及趋势[J]. 泥沙研究,2022,47(1):59-64.

    Yuan Fei, He Yong, Xu Jiejing. Recent topographical evolution characteristics and trend of the Pearl River Delta[J]. Journal of Sediment Research, 2022, 47(1): 59-64.
    [40] 赵焕庭. 珠江河口演变的基本过程[J]. 热带海洋,1984,3(4):1-9.

    Zhao Huanting. The general evolution process of Zhujiang (Pearl River) Mouth[J]. Tropic Oceanology, 1984, 3(4): 1-9.
    [41] 赵焕庭. 珠江三角洲的水文特征[J]. 热带海洋,1983,2(2):108-117.

    Zhao Huanting. Hydrological characteristics of the Zhujiang (Pearl River) Delta[J]. Tropic Oceanology, 1983, 2(2): 108-117.
    [42] 赵焕庭. 珠江河口的水文和泥沙特征[J]. 热带地理,1989,9(3):201-212.

    Zhao Huanting. Hydrological and sedimentary characteristics of the Pearl River Estuary[J]. Tropical Geography, 1989, 9(3): 201-212.
    [43] 陈耀泰. 珠江口现代沉积速率与沉积环境[J]. 中山大学学报(自然科学版),1992,31(2):100-107.

    Chen Yaotai. Modern sedimentary velocity and sedimetary environment in the Pearl River Mouth[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1992, 31(2): 100-107.
    [44] 龙云作,霍春兰,司桂贤,等. 对珠江三角洲沉积特征和沉积模式的一些认识[J]. 海洋地质与第四纪地质,1985,5(4):49-57.

    Long Yunzuo, Huo Chunlan, Si Guixian, et al. On sedimentary characteristics and model of Zhujiang River Dalta[J]. Marine Geology & Quaternary Geology, 1985, 5(4): 49-57.
    [45] 龙云作,霍春兰,杨胜雄. 珠江三角洲现代沉积环境及沉积特征[J]. 海洋地质与第四纪地质,1989,9(4):15-27.

    Long Yunzuo, Huo Chunlan, Yang Shengxiong. Modern sedimentary environment and characteristics of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1989, 9(4): 15-27.
    [46] 张光威,马道修,徐明广,等. 珠江口现代沉积物构造特征及其沉积环境[J]. 海洋地质与第四纪地质,1988,8(3):71-83.

    Zhang Guangwei, Ma Daoxiu, Xu Mingguang, et al. Sedimentary environments and structures of modern sediments in the mouth of Zhujiang River[J]. Marine Geology & Quaternary Geology, 1988, 8(3): 71-83.
    [47] 时硕,吉俊熹,王张华. 珠江三角洲全新世沉积物C/N和δ13C变化及对甘蔗种植业的指示[J]. 第四纪研究,2022,42(2):397-411.

    Shi Shuo, Ji Junxi, Wang Zhanghua. Holocene varia-bility of bulk organic C/N and δ13C and implications for the sugarcane cultivation[J]. Quaternary Sciences, 2022, 42(2): 397-411.
    [48] 韦惺,吴超羽. 珠江三角洲沉积体与河网干流河道的形成发育[J]. 海洋学报,2018,40(7):66-78.

    Wei Xing, Wu Chaoyu. The formation and development of the deposition bodies and main channels in the Zhujiang River Delta[J]. Haiyang Xuebao, 2018, 40(7): 66-78.
    [49] 张绍轩,汤永杰,郑翠美,等. 珠江三角洲全新世海—陆沉积模式转换及其年代[J]. 海洋地质与第四纪地质,2020,40(5):107-117.

    Zhang Shaoxuan, Tang Yongjie, Zheng Cuimei, et al. Holocene sedimentary environment transform and onset time of Pearl River Delta progradation[J]. Marine Geology & Quaternary Geology, 2020, 40(5): 107-117.
    [50] 陈耀泰. 珠江入海泥沙的浓度和成分特征及其沉积扩散趋势[J]. 中山大学学报(自然科学版),1991,30(1):105-113.

    Chen Yaotai. On features of density and ingredient as well as trend of the deposit and the spread of the sediment from Pearl River into the sea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1991, 30(1): 105-113.
    [51] 周青伟,马道修,徐明广,等. X射线照像在珠江三角洲现代沉积环境调查中的应用及其意义[J]. 海洋地质与第四纪地质,1987,7(3):79-89.

    Zhou Qingwei, Ma Daoxiu, Xu Mingguang, et al. Application of X-ray radiography in modern sedimentary environmental investigations in the Zhujiang River Delta and its significance[J]. Marine Geology & Quaternary Geology, 1987, 7(3): 79-89.
    [52] 马道修,徐明广,周青伟,等. 珠江三角洲沉积相序[J]. 海洋地质与第四纪地质,1988,8(1):43-53.

    Ma Daoxiu, Xu Mingguang, Zhou Qingwei, et al. Sedimentary facies sequences of the Zhujiang River Delta[J]. Marine Geology & Quaternary Geology, 1988, 8(1): 43-53.
    [53] Buatois L A, Santiago N, Herrera M, et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline[J]. Sedimentology, 2012, 59(5): 1568-1612.
    [54] Netto R G, Tognoli F M W, Assine M L, et al. Crowded Rosselia ichnofabric in the Early Devonian of Brazil: An example of strategic behavior[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 395: 107-113.
    [55] MacEachern J A, Bann K L, Bhattacharya J P, et al. Ichnology of deltas: Organism responses to the dynamic interplay of rivers, waves, storms, and tides[M]//Giosan L, Bhattacharya J P. River deltas: Concepts, models, and examples. Tulsa: Society for Sedimentary Geology, 2005.
    [56] Miguez-Salas O, Rodríguez-Tovar F J, de Weger W. Macaronichnus and contourite depositional settings: Bottom currents and nutrients as coupling factors[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 545: 109639.
    [57] Quaye J A, Jiang Z X, Zhou X W. Bioturbation influence on reser-voir rock quality: A case study of well Bian-5 from the Second member Paleocene Funing Formation in the Jinhu Sag, Subei Basin, China[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1165-1173.
    [58] de Jesus Gomes de Sousa M, Sales Viana M S, Paula Moreira J V, et al. Arthrophycus alleghaniensis Harlan, 1831 in the Tianguá Formation, Brazil (Silurian of the Parnaíba Basin)[J]. Journal of South American Earth Sciences, 2019, 92: 523-530.
    [59] Melchor R N. Application of vertebrate trace fossils to palaeoenvironmental analysis[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 439: 79-96.
    [60] O’Connell B, Dorsey R J, Hasiotis S T, et al. Mixed carbonate-siliciclastic tidal sedimentation in the Miocene to Pliocene Bouse Formation, palaeo-gulf of California[J]. Sedimentology, 2021, 68(3): 1028-1068.
    [61] Hofmann R, Mángano M G, Elicki O, et al. Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the middle Cambrian (Stage 5) of Jordan[J]. Journal of Paleontology, 2012, 86(6): 931-955.
    [62] Bradshaw M A. Paleoenvironmental interpretations and systematics of Devonian trace fossils from the Taylor Group (Lower Beacon Supergroup), Antarctica[J]. New Zealand Journal of Geology and Geophysics, 1981, 24(5/6): 615-652.
    [63] Desai B G, Biswas S K. Postrift deltaic sedimentation in western Kachchh Basin: Insights from ichnology and sedimentology[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 504: 104-124.
    [64] Flaig P P, Hasiotis S T, Jackson A M. An Early Permian, paleopolar, postglacial, river-dominated deltaic succession in the Mackellar-Fairchild formations at Turnabout Ridge, Central Transantarctic Mountains, Antarctica[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 441: 241-265.
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)  / Tables(2)

Article Metrics

Article views(108) PDF downloads(34) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-08-29
  • Revised:  2022-11-15
  • Accepted:  2023-01-10
  • Published:  2024-10-10

Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front

doi: 10.14027/j.issn.1000-0550.2022.149
Funds:

National Natural Science Foundation of China 42172130

Young Backbone Teachers Training Program of Henan Province 2023GGJS055

Abstract: Objective The Pearl River Delta front is a complicated sedimentary system controlled by rivers, waves, and tides. Most previous studies focused on the physical and chemical sedimentary characteristics. However, biogenic sedimentary structures are extremely sensitive to the environment; therefore, comprehensive and high resolution research should be conducted. Methods Based on sedimentary and ichnological methods, salinity, turbidity, total organic carbon (TOC), grain size analysis, X-ray scans, and three-dimensional (3D) reconstruction were applied to the modern biogenic sedimentary structures in different microenvironments of the Pearl River Delta front. Results The main results are as follows: (1) The main trace makers are Bivalve clams, Arthropoda hermit crabs, Crustacean crabs, Annelid bitoothed berbera, and chordate mudskippers. (2) The main biogenic traces include climbing tracks, foot tracks, bird tracks and excretion tracks, and burrows, and the main morphology of burrows include Y, L, U, and I-shape. (3) The diversity, abundance, and bioturbation in the tidal channel and island are higher than the interdistributary bay. Conclusions This study perfected the ichnology of the delta front and modern delta sedimentary environment. Moreover, it resolved the high resolution identification of a paleo-delta front sedimentary system.

WANG YuanYuan, GOU SongLin, ZHANG GuoCheng. Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.149
Citation: WANG YuanYuan, GOU SongLin, ZHANG GuoCheng. Composition and Distribution Characteristics of Biological Traces in the Pearl River Delta Front[J]. Acta Sedimentologica Sinica, 2024, 42(5): 1512-1529. doi: 10.14027/j.issn.1000-0550.2022.149
  • 三角洲沉积环境复杂,受到沉积学界的密切关注。前人对三角洲的研究主要集中于物理沉积环境,极少关注其中的生物成因的沉积构造。遗迹学研究的是现代和古代的生物遗迹,基于发现和分析生物成因的沉积构造,主要强调生物和环境的相互作用,为鉴定和解释沉积环境起到了不可替代的作用[18]

    近十年来,国外学者对三角洲的现代沉积学研究和现代生物遗迹研究主要集中于弗雷泽河三角洲[911]和尼罗河三角洲[1213]等地;国内的研究多数集中于以下研究区:黄河三角洲潮坪现代沉积及生物遗迹特征[1422]、沉积演变以及河流流量对水动力和沉积过程的影响[2324]等;长江三角洲潮坪现代沉积特征、潮汐动力特征[2527]等;杭州湾的现代沉积和现代生物遗迹特征[28];青岛日照潮坪现代沉积和现代生物遗迹特征[29];滦河三角洲现代造迹生物及其遗迹的组成和分布特征[30]。这些研究揭示了生物遗迹对三角洲亚环境、微环境的指示作用,为古三角洲遗迹学的发展提供了现实依据,同时也为油气勘探开发和成煤作用研究提供了指导和理论依据[19,3136]

    现代珠江三角洲前缘在不同沉积微环境中具有河流、波浪、潮汐分别主控或者共存的现象,特征丰富。而前人对珠江三角洲的研究大都侧重于珠江三角洲的形成、发展和演变过程[3740]、水文泥沙特征[4142]、潮汐、沉积环境和沉积特征[4346]等方面,尚未对珠江三角洲前缘现代生物遗迹的组成和分布特征进行系统研究。因此,开展现代珠江三角洲前缘沉积学及现代遗迹考察研究,将为研究珠江三角洲前缘现代沉积提供现代生物学实证基础,并为研究古三角洲前缘沉积特征和古遗迹学特征提供现代遗迹学依据。

  • 研究区位于广东省珠江下游入海口,与香港、澳门相邻,周围岛屿众多(图1)。珠江水系是我国四大水系之一,有着三江(东江、西江和北江)汇流、八口(虎门、蕉门、洪奇门、横门、磨刀门、鸡鸣门、虎跳门和崖门)入海[39]的美誉,水流情况复杂。在我国四大水系中,珠江水系年平均径流量(3.456×108 m3)居第二位,年平均输沙量(0.283 kg/m3)和含沙量居第三位,珠江流域面积(约45.26×104 km2)及长度(2 320 km)居第四位[41,45]

    Figure 1.  Location of the study area

    珠江三角洲是由东江、西江和北江等多条河流在珠江古河口湾内堆积而成的复合三角洲[4749],各河口均为有潮汐河口。各河口潮汐属不规则半日潮,每月两涨两落,大潮汛、小潮汛各六天,其余为寻常潮,潮差一般为0.86~1.66 m,属弱潮[37,42,45]。研究区处于北回归线以南沿海地区,气温较高,降雨量充足,年平均气温为21.5 ℃~22.5 ℃,年平均降雨量在1 600 mm以上,但季节分配不均,多集中在雨季,使得径流和潮流变率大[45]。湾内岛屿残丘众多,形成口门屏障,故波浪作用微弱,平均波高1 m左右[42,45]。物源区风化作用强,使得搬运的沉积物颗粒偏细[45],每年进入南海并沉积、扩散于河口湾及附近海岸和陆架区域的细颗粒泥沙合计超过8 400×104 t[50]

    本次研究选取珠江三角洲前缘亚环境作为研究区,其中河口沙坝、水下汊道、潮下带和分流间海湾等微环境生物扰动明显,为主要研究区。潮下带和前缘斜坡生物遗迹观测难度较大,仅研究其现代沉积特征。

  • 采样点位于广东省中山市和珠海市沿岸以及淇澳岛、东澳岛四周海域,通过GPS(全球定位系统)确定各个采样点位置,并在Google Earth Pro进行标记绘制地图,共确定63个采样点。以淇澳岛为中心向外分散8条路线,共确定37个采样点,并在淇澳岛和东澳岛海岸选取8个采样点。此外,在中山市和香洲区沿岸及分支河道中确定18个采样点(图2)。

    Figure 2.  Distribution of sampling points

    在各个采样点采取水样和土样,测定水样的盐度和浑浊度,并对土样进行粒度分析。在研究区内各个海岸和分流河道的采样点中,使用PVC管对形态保存完好且具有代表性的生物潜穴进行取心,所使用的PVC管直径为5.0 cm和7.5 cm,高度为15.0 cm。

  • 将使用PVC管取得的岩心带到中国科学院南京土壤研究所进行CT扫描实验。CT扫描仪器参数如下:型号是Nanotom S,电压是180 kV,功率是15 W,细节检测能力高达200 nm。

  • 三维重构即对CT扫描获取的CT图像数据(体数据)进行三维可视化处理,包括体数据三维渲染。灰度值分割、定向数字虚拟切面、动画制作和图片的保存等。处理过程中使用到ImageJ和VG Studio Max 3.0两款软件。三维重构过程在中国科学院南京古生物地质研究所X射线断层扫描实验室完成。

    具体处理方式如下:(1)将扫描获取的切片图导入至ImageJ,观察生物潜穴是否清晰可见,将效果好的孔隙通过ImageJ进行提取,效果不好的进行降位(图片位深度由16 bit降至8bit);(2)将在ImageJ中处理过的图片导入VG Studio 3.0再次处理,最后对制作完成的生物潜穴进行渲染和动画的制作,将图片和视频保存。

  • 将采集的沉积物样品带回实验室,在105 ℃的烘箱内进行干燥。干燥后的沉积物按照不同的微环境装入样品袋,每袋样品50 g左右,采用Rise2008激光粒度分析仪进行粒度分析。样品通过仪器的分选,得到多个粒度曲线,通过软件PADMAS颗粒粒度测量分析系统(Particle Diameter Measure & Analysis System)将测试数据做平均、统计、比较和模式转换等处理,得到分析结果。

  • 珠江三角洲地区的河流在潮流、径流和其他海洋动力的影响下沉积作用较为强烈,西江径流作为沉积作用的主要动力,主要物质也为西江物质[49,51]。在上述因素和化学风化作用的共同影响下,沉积物构造以类块状构造和粉砂质黏粒结构为主[51]。层理是水流与沉积物共同作用产生的某种几何形态的沉积单位,在沉积构造研究中极其重要[46]。研究区内发现多种层理,如韵律层理(图3a)、泥沙互层的平行层理(图3b)等。除层理外,还发现在潮流和波浪作用下形成的波痕,如由不同方向潮流和波浪或两者共同作用形成的干涉波痕(图3c)、削顶波痕(图3d)等。

    Figure 3.  Physical sedimentary structure characteristics

  • 珠江三角洲属多源水系相汇,其径流和河口潮流在不同季节、不同口门、不同发展阶段表现不同[44],径流和河口潮流的相互消长使得沉积物组分不均,沉积环境复杂。研究区内采样点分布主要分布在分流间海湾、潮下带、水下汊道、潮汐水道和岛屿等微环境中(图4)。沉积物粒度分布曲线以粒度大小和百分含量为横纵坐标,是对环境进行解释非常有效的图解形式,各采样点多为粉砂,部分为中砂,分选性整体较差,水的盐度较高,多为咸水,部分为半咸水,淡水较少(表1)。

    Figure 4.  Division of microenvironment and distribution of biological traces in the Pearl River Delta front

    微环境站点粒径/mm描述分选/σ描述盐度描述
    分流间海湾1718.10咸水
    180.006极细粉砂1.52518.80咸水
    190.005极细粉砂1.47318.20咸水
    200.005极细粉砂1.50819.20咸水
    310.006极细粉砂1.60316.20咸水
    320.006极细粉砂1.63215.90半咸水
    330.007极细粉砂1.62910.30半咸水
    340.007极细粉砂1.6453.44半咸水
    350.007极细粉砂1.7648.13半咸水
    440.463中砂0.48816.80咸水
    450.307中砂0.635较好18.00咸水
    480.006极细粉砂1.6295.48半咸水
    490.010细粉砂3.256极差
    500.365中砂0.566较好13.90半咸水
    510.311中砂0.690较好10.60半咸水
    520.250细砂0.701中等14.10半咸水
    5313.60半咸水
    540.244细砂0.781中等14.20半咸水
    5511.60半咸水
    560.023中粉砂2.258极差2.17半咸水
    610.006极细粉砂1.4789.27半咸水
    620.010细粉砂1.8302.20半咸水
    6312.10半咸水
    潮下带50.014细粉砂2.609极差11.80半咸水
    60.007极细粉砂1.81820.90咸水
    70.008极细粉砂1.84421.60咸水
    80.008极细粉砂1.96723.50咸水
    110.009细粉砂2.057极差11.80半咸水
    120.007极细粉砂1.76318.30咸水
    130.010细粉砂2.154极差20.40咸水
    140.007极细粉砂1.87621.30咸水
    160.006极细粉砂1.56517.40咸水
    210.008细粉砂1.98118.60咸水
    220.011细粉砂2.317极差18.90咸水
    230.011细粉砂2.469极差20.70咸水
    240.093极细砂2.503极差22.00咸水
    250.012细粉砂2.188极差22.30咸水
    260.008细粉砂2.012极差20.20咸水
    270.007极细粉砂1.80922.10咸水
    280.007极细粉砂1.83625.00咸水
    290.030中粉砂2.975极差26.40咸水
    300.007极细粉砂1.79026.50咸水
    370.007极细粉砂1.74615.80半咸水
    380.007极细粉砂1.91012.60半咸水
    390.018中粉砂2.589极差9.31半咸水
    400.019中粉砂2.384极差14.30半咸水
    436.23半咸水
    续表
    in the Pearl River Delta front

    Table 1.  Grain size and salinity parameters of sediment samples from different microenvironments

  • 采样点包括站点17~20、31~35、44~45、48~56和站点61~63,该区域靠近海岸线分布。该区域沉积物粒度介于0.005~0.463 mm,以极细粉砂为主,各采样点分选普遍差(表1)。站点49的粒度分布曲线为尖锐双峰不对称型(图5a),分选较差(表1),水动力条件较弱,以潮汐作用为主的静水环境[46,52]

    Figure 5.  Grain size distribution curves of different stations in the Pearl River Delta front

  • 站点5~8、11~14、16、21~30以及站点37~40和站点43的微环境为潮下带,潮下带处于平均海平面以下,沉积物粒度普遍较细,该区域采样点沉积物粒度介于0.005~0.093 mm,多为极细粉砂与细粉砂,分选极差(表1)。站点39的粒度分布曲线形态与站点49相同,为尖锐双峰不对称型(图5b),分选极差,水动力条件弱,潮流作用强于径流作用[45]

  • 站点41~42和站点57~60选取,主要受径流的影响,是潮涨潮落的通道,沉积物多为粗粉砂,粒度介于0.006~0.038 mm,分选性较差(表1)。站点60的粒度分布曲线为单峰不对称型(图5c),分选较差,水动力在径流和潮流的共同作用下较弱。自口门向外,径流作用在潮流作用的反作用下由强逐渐变弱[46]

  • 选取的采样点较少,仅有站点9和站点15。潮汐水道主要受潮流的影响,为涨潮落潮通道,分选极差。站点9的粒度分布曲线为双峰不对称型(图5d),仅受潮汐作用影响,水动力较弱。

  • 采样点包括站点1~4、10、36和站点46~47,岛屿受潮流和近岸流作用的共同影响,粒度较大,多为中砂。站点47的粒度分布曲线为尖端单峰近对称型(图5e),水动力较强,分选较好。

    通过比较各个微环境的沉积物粒度发现,从分流间海湾和潮下带等微环境到离岸较远的岛屿微环境,沉积物粒度逐渐增大,这表明水动力也逐渐增强,不同微环境的粒度分析比较如图5f,研究区内采样点依据粒度划分如图6

    Figure 6.  Grain size distribution in the Pearl River Delta front

  • 研究区内主要的造迹生物主要有沙蚬(Mactridae)、螃蟹(Brachyura)、双齿围沙蚕(Perinereis)和弹涂鱼(Periophthalmus),部分采样点存在寄居蟹(Paguridae)、贻贝(Mytilus)、疣荔枝螺(Reishia)和芝麻螺(Planaxidae)以及鸟类等生物痕迹,具体造迹生物遗迹分布情况如下。

  • 站点57:该点主要的造迹生物为螃蟹,生物扰动明显,还发现有沙蚕和弹涂鱼,但数量较少。螃蟹在层面上留下的痕迹有居住迹、足辙迹和排泄迹,潜穴口为近圆形,潜穴口四周有沉积物堆积,可能是建造潜穴时挖出(图7a)。双齿围沙蚕的造迹主要为爬行迹和居住迹,竖直剖开沉积物,可以看到长1.3 cm的U型沙蚕潜穴,潜穴内壁光滑,有铁锈色,可能是沙蚕分泌的黏液附着(图7b)。该站点的沉积物粒度为中粉砂,含水量适中,因此层面上的弹涂鱼遗迹清晰,但未观察到弹涂鱼的潜穴,主要为爬行、跳跃痕迹(图7c),中间为一条宽2~5 mm的拖迹,两侧明显的纹理为胸鳍的压痕。三维重构结果显示,表层有明显的四个孔隙,三大一小。三维重构为复杂的Y型分支潜穴,上部有一条沙蚕的遗迹潜穴,没有共生现象(图7d)。另一个只在上部有倾斜的L型潜穴,中部出现双壳的壳体。

    Figure 7.  Characteristics of traces of crabs, nereis and mudskippers in the underwater branch of the Pearl River Delta front

    站点58:该点的主要造迹生物有螃蟹和沙蚕,产生的生物遗迹有螃蟹居住迹和双齿围沙蚕的居住迹和排泄迹,还发现有鸟足迹(图8a)。采集的2个PVC样品经扫描重构后,螃蟹、沙蚕潜穴清晰(图8b),生物扰动明显。螃蟹潜穴形态大多较粗,多呈L型、Y型和U型,部分有瘤状凸起。沙蚕潜穴形态较细,多呈I型,部分微倾斜。

    Figure 8.  Characteristics of surface⁃level biological traces and intra⁃layer burrows in the underwater branch of the Pearl River Delta front

    站点59:该点的造迹生物为螃蟹和弹涂鱼。弹涂鱼多生活在靠近潮道的饱和水沉积物中,主要的生物遗迹为弹涂鱼的居住迹和爬行迹(图8c)。当弹涂鱼受到外界惊吓时会迅速返回潜穴,故其潜穴多为倾斜的逃逸潜穴。螃蟹潜穴集中在含水量小的靠岸侧,生物遗迹主要为居住迹和足辙迹。PVC样品扫描重构结果显示样品顶部和中部有较粗的倾斜潜穴,还分布着部分细小的Y型和I型潜穴,且与粗枝相连(图8d)。

    站点60:该点的主要造迹生物是沙蚕和弹涂鱼,生物扰动明显,螃蟹数量较少,产生的生物遗迹有沙蚕居住迹、弹涂鱼居住迹和弹涂鱼运动迹以及螃蟹居住迹。重构结果显示沙蚕潜穴较细,形态多呈Y型、U型和I型,螃蟹潜穴较粗,形态呈L型。

  • 站点45:该点沉积物为沙泥互层,螃蟹是主要造迹生物,集中出现在浅滩的淤泥中,淤泥下石块较多,无法使用PVC进行采取。螃蟹潜穴数量多而密集,但泥质疏松,足辙迹不明显(图9a)。除螃蟹外,还有少量沙蚕、弹涂鱼生活的痕迹和鸟足迹。

    站点48:层面上的生物遗迹有螃蟹居住迹、足辙迹和鸟足迹,螃蟹足辙迹呈点坑状分布在潜穴一侧,潜穴口为烟囱状,高于沉积物表面(图9b),周围有植物生长。三维重构结果显示有4.7 cm高的Y型螃蟹潜穴位于PVC管上部。

    站点54:该点的造迹生物仅观察到螃蟹,其遗迹主要为居住迹和团状的排泄迹,排泄迹呈尾状分布(图9c)。

    站点56:该点的造迹生物主要有沙蚕、螃蟹和弹涂鱼,还发现有鸟足迹。沙蚕居住迹和排泄迹(图9d)以及螃蟹居住迹较多,生物扰动明显,弹涂鱼和鸟足迹等遗迹较少。沙蚕居住迹内部主要分布在上部,中下部较少,形态呈I型、Y型和复杂分支型。

    Figure 9.  The characteristics of dwelling traces, trackways and excretion traces in the interdistributary bays of the Pearl River Delta front

    站点61:弹涂鱼和螃蟹该点的造迹生物,生物扰动明显。层面上的主要生物遗迹为两者的居住迹、螃蟹点坑状的足辙迹和弹涂鱼的爬行迹(图10a)。

    站点62:该点的造迹生物为螃蟹、双齿围沙蚕和弹涂鱼,生物扰动明显。螃蟹和沙蚕大多分布在远离潮道的靠岸侧,沉积物含水量少,较坚固,有植被分布,主要遗迹为螃蟹居住迹、沙蚕居住迹。弹涂鱼分布在靠近潮道的位置,主要遗迹为觅食迹、居住迹和足辙迹(图10b),痕迹大多模糊不清,其觅食迹基本沿饱和水的一侧呈放射状向外散开,潜穴口大多呈圆形或向一侧倾斜椭圆形,后一种的潜穴口大多只有一条逃逸迹。共采集3个PVC样品,扫描重构结果较好。1号样品判断为螃蟹潜穴,重构结果显示形态呈复杂的分支型,分支连接处多为瘤状凸起,应是螃蟹休息、转身造成。2号样品顶部有一条直径为1 cm的倾斜的螃蟹潜穴,中上部也有Y型倾斜潜穴(图10c)。3号有一条直达底部的Y型螃蟹潜穴,周围还有着复杂的分支型沙蚕潜穴,这些生物潜穴相连,螃蟹和沙蚕可能为共生。

    Figure 10.  The characteristics of traces of crabs and mudskippers in the interdistributary bays and the mactra in the island of the Pearl River Delta front

  • 站点1:共采取3个PVC样品,但扫描结果均不理想,未发现生物营造的潜穴形态。该点层面上出现的主要造迹生物为沙蚬,其主要生活在淡、咸水交汇处,碎石堆下的泥沙中数量较多,偶见在沙滩营造潜穴。沙蚬常生活在沙土下,使用PVC管取岩心观察沙蚬下潜过程及潜穴形态(图10d)。除沙蚬潜穴外,还发现不少螃蟹潜穴(图11a)。此外还出现贻贝(青口)、芝麻螺、水蚯蚓、海蛞蝓、疣荔枝螺和鸟足迹,但数量较少。

    站点2:该点发现的造迹生物只有螃蟹,层面上可观察到足辙迹和潜穴(图11b)。采取1个PVC样品,扫描结果显示上部有较多小的孔隙,中上部粒度变大、无空隙,下部粒度最细。

    站点3:该点发现的造迹生物只有沙蚬,其数量较多。营造有沙蚬潜穴,但由于潮水冲刷,无法采取PVC样品。

    站点4:该点处于嵌入东澳岛中部的湾内,水动力较弱,长时间处在水平面以上,主要的造迹生物是寄居蟹,未发现其潜穴,运动产生的拖痕较多、较明显(图11c)。除寄居蟹外,岩缝中栖息着螃蟹,还发现有生蚝。

    站点10:该点人迹罕至,生物遗迹保存完好,生物扰动明显。层面上发现的生物遗迹有螃蟹潜穴和点坑状的足辙迹,潜穴洞口大、数量多,足辙迹密集、明显(图11d)。

    站点46:层面上观察到的造迹生物只有螃蟹,螃蟹潜穴较多且多数潜穴旁都有团状的排泄迹(图11e)。PVC重构结果显示沉积物的粒度结构为上粗下细的沙泥互层,还发现了I型螃蟹潜穴和Y型沙蚕潜穴(图11f)。

    Figure 11.  Biological traces of islands in the Pearl River Delta front

  • 三角洲前缘分流间湾微相主要分布的遗迹化石包括Planolites、Palaeophycus、Thalassinoides、Teichi chnus、Ophiomorpha、Skolithos、Diplocraterion、Rosselia等。三角洲前缘水下分流河道微相主要分布的遗迹化石包括OphiomorphaMacaronichnus、Chondrites、Arenicolites等。三角洲前缘河口沙坝微相主要分布的遗迹化石包括Palaeophycus、Chondrites、Helminthop sis、Arenicolites、Planolites、Asterosoma、Macaronichnus、Scolicia等。三角洲前缘水下汊道微相主要分布的遗迹化石包括Teichichnus、Thalassinoides、Arenicolites、Planolites、Skolithos、Treptichnus、Diplocraterion、Rosselia这些遗迹化石,有层面分布的水平遗迹也有垂直层面分布的Y形、U形、L形等潜穴系统,造迹生物大多与蠕虫类如沙蚕和甲壳类如螃蟹等有关(表2)。珠江三角洲前缘所研究的现代生物遗迹层面层内分布形态多样,现代造迹生物也主要是蠕虫类沙蚕、甲壳类的螃蟹及双壳类生物(图12),因此现代珠江三角洲前缘的现代生物遗迹具有较强的保存潜力,也进一步明确了上述遗迹化石可能的造迹生物。

    Figure 12.  Model of modern biological traces in the Pearl River Delta front

  • 古三角洲前缘在不同的沉积微相中存在多种遗迹相如Teredolites遗迹相、Glossifungites遗迹相、Skolithos遗迹相、Cruziana遗迹相、Psilonichnus遗迹相、Zoophycus遗迹相以及mixed Skolithos⁃Cruziana遗迹相(表2),以砂为主的相丰度更高[60],因此现代珠江三角洲前缘不能简单地用任何一类已建立的遗迹相来描述。珠江三角洲前缘环境的生物遗迹既有层面类型又有层内类型,混合了典型的Skolithos遗迹相、Cruziana遗迹相以及Psilonichnus遗迹相。因此,适用于复杂综合应力条件下珠江三角洲前缘的类古三角洲前缘的遗迹相模型有待建立。

  • 沉积速率影响着遗迹的分布,沉积速率高导致大规模重力破坏使得遗迹多样性较低[6364],珠江三角洲前缘现代生物遗迹为类比研究古三角洲前缘沉积速率提供了现代遗迹方面的实证材料。低沉积速率下有利于造迹生物在沉积底层造迹以及生物遗迹的更均衡分布和保存,而高沉积速率条件下底层沉积物间歇性瞬时性的迅速沉积导致生物生殖、居住活动锐减,生物遗迹丰度随之降低。另外,随着沉积物的迁移和瞬时沉积,动荡和不稳定的环境限制了造迹生物的种类,从而导致生物遗迹分异度降低。

    表2 古三角洲前缘遗迹学特征

    Table 2 The ichnological characters of the palaeo⁃delta front

    三角洲前缘微环境遗迹化石遗迹化石基本特征造迹生物营养类型遗迹相地质年代环境的影响因素参考文献
    分流间湾Planolites水平或近水平的或微倾斜的主动充填的简单结构遗迹蠕虫类食碎屑沉积物Teredolitesichnofacies,Glossifungitesichnofacies,PsilonichnusichnofaciesNeogene,Permian,Early Devonian受潮汐影响的半咸水环境,如潮坪或决口扇沉积环境Buatois et al.[53]; Netto et al.[54]
    Palaeophycus被动充填的光滑外壁的无衬壁的圆管状潜穴蠕虫类,如沙蚕等环节、多毛类动物食碎屑物、沉积物
    Thalassinoides有分支的水平或者垂直的无衬壁或者有薄衬壁的潜穴甲壳类食碎屑物
    Teichichnus水平或近倾斜的无衬壁的具有向后的璞状构造的潜穴沙蚕、蠕虫、星虫动物、节肢动物食沉积物
    Ophiomorpha水平到垂直的具有瘤状外壁的分支潜穴甲壳类动物食碎屑物
    Skolithos具有薄衬壁的不分支的垂直潜穴蠕虫生物,如帚虫、多毛类生物食悬浮物
    Diplocraterion垂直U形管状潜穴,具有向前的璞状构造多毛类、海胆、端足目或者其他甲壳类生物沉积物或有机碎屑
    Rosselia漏斗或纺锤形的垂直于地层的潜穴多毛类、沙蚕食沉积物或有机碎屑
    Planolites水平或近水平的或微倾斜的主动充填的简单结构遗迹蠕虫类食碎屑沉积物
    分流河道Ophiomorpha水平到垂直的具有瘤状外壁的分支潜穴甲壳类动物食碎屑物Cruziana ichnofacies,Skolithos ichnofaciesLate Miocene,Paleocene受潮汐影响的河控三角洲MacEachern et al.[55]; Miguez-Salas et al.[56]; Quaye et al.[57];de Jesus Gomes de Sousa M et al.[58]
    Macaronichnus层内觅食潜穴,柱状或亚柱状,不分支多毛类食沉积物
    Chondrites具有树枝形网状分支的潜穴系统多毛类、星虫类生物食碎屑物
    Arenicolites无分支的垂直于层面的U形潜穴多毛类食碎屑物
    河口沙坝Palaeophycus被动充填的光滑外壁的无衬壁的圆管状潜穴蠕虫类,如沙蚕等环节动物、多毛类动物食碎屑物、沉积物Cruzianaichnofacies,Zoophycusichnofacies,Late Triassic受潮汐影响的河控三角洲MacEachern et al.[55]
    Chondrites具有树枝形网状分支的潜穴系统多毛类、星虫类生物食碎屑物
    Arenicolites无分支的垂直于层面的U形潜穴多毛类食碎屑物
    Planolites水平或近水平的或微倾斜的主动充填的简单结构遗迹蠕虫类食碎屑沉积物
    Asterosoma水平分布的具有横条状纹理的分支遗迹蠕虫类,如沙蚕食沉积物
    Macaronichnus层内觅食潜穴,柱状或亚柱状,不分枝多毛类食沉积物
    Scolicia具有两条平行的拖迹,且中间有半月板的水平于层面分布的遗迹棘皮动物食沉积物
    水下汊道Teichichnus水平或近倾斜的无衬壁的具有向后的璞状构造的潜穴沙蚕、蠕虫、星虫动物、节肢动物食沉积物mixed Skolithos⁃CruzianaichnofaciesMiocene to Pliocene, Devonian潮汐影响的三角洲前缘海岸沉积Melchor [59]; O’Connell et al.[60]; Hofmann et al.[61]; Bradshaw[62]
    Thalassinoides有分支的水平或者垂直的无衬壁或者有薄衬壁的潜穴甲壳类食碎屑物
    Arenicolites无分支的垂直于层面的U形潜穴多毛类食碎屑物
    Planolites水平或近水平的或微倾斜的主动充填的简单结构遗迹蠕虫类食碎屑沉积物
    Skolithos具有薄衬壁的不分支的垂直潜穴蠕虫生物,如帚虫、多毛类生物食悬浮物
    Treptichnus末端具有分支的平行于层面分布的潜穴蠕虫类食沉积物
    Diplocraterion垂直U形管状潜穴,具有向前的璞状构造多毛类、海胆、端足目或其他甲壳类生物沉积物或有机碎屑
    Rosselia漏斗或纺锤形的垂直于地层的潜穴多毛类、沙蚕食沉积物或有机碎屑
    续表
  • (1) 研究区内现代生物遗迹在水下汊道和岛屿的分布分异度和丰度较其他微环境高,搜集的生物遗迹信息可分为层上遗迹(拖迹、足辙迹、爬行迹和排泄迹等)和层内遗迹(居住迹)。

    (2) 水下汊道和岛屿生物扰动明显,观察到的主要造迹生物有双壳类动物沙蚬Mactridae、节肢动物门寄居蟹Paguridae、甲壳类动物螃蟹Brachyura、环节动物门双齿围沙蚕Perinereis、脊索动物门弹涂鱼Periophthalmus以及鸟等,还有少量贻贝Mytilus、疣荔枝螺Reishia等。

    (3) 分流间海湾生物扰动较水下汊道和岛屿弱,主要造迹生物为甲壳类动物螃蟹Brachyura。潮下带位于平均低潮线以下,不便观察,未发现明显生物遗迹。各微环境生物在层面上营造的生物遗迹主要包括爬行迹、足辙迹、鸟足迹以及排泄迹等,层内的主要遗迹为居住迹,表现为各种类型的潜穴形态。

Reference (64)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return