Advanced Search
Volume 42 Issue 6
Dec.  2024
Turn off MathJax
Article Contents

CHEN Zhen, WANG LiJuan, LI Juan, HE JiaWei, YANG YongBiao, DENG Tao, GUAN JunPeng, GONG HaiTing, HU XiuMian. Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2191-2203. doi: 10.14027/j.issn.1000-0550.2023.026
Citation: CHEN Zhen, WANG LiJuan, LI Juan, HE JiaWei, YANG YongBiao, DENG Tao, GUAN JunPeng, GONG HaiTing, HU XiuMian. Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2191-2203. doi: 10.14027/j.issn.1000-0550.2023.026

Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area

doi: 10.14027/j.issn.1000-0550.2023.026
Funds:

Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province, China BE2022859

Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province, China BE2022034

  • Received Date: 2022-11-27
  • Accepted Date: 2023-04-28
  • Rev Recd Date: 2023-03-12
  • Available Online: 2023-04-28
  • Publish Date: 2024-12-10
  • Objective In the Lower Yangtze area, thick Early Paleozoic carbonates are potential reservoirs for oil, gas and geothermal resources. In 2021, well Sure1, drilled by the Geological Survey of Jiangsu province in the Subei Basin, successfully detected high-temperature hot-dry rock geothermal resources in the Early Paleozoic carbonates, bringing the Early Paleozoic carbonate sedimentary microfacies and environmental evolution widespread academic attention. Methods A detailed microfacies analysis was conducted on well Sure 1 in Subei Basin and three field outcrops in the Ningzhen Mountains to reconstruct the sedimentary environmental evolution of the Early Paleozoic carbonates in the Lower Yangtze area and provide key basic geological information for the exploration of hot-dry rock geothermal resources in the study area. Results Thirteen microfacies, corresponding to peritidal and shoal environments in an inner carbonate platform setting with no significant change in paleowater depth, were identified by integrating sedimentological and paleontological observations. The Cambrian Mufushan Formation and Guanyintai Formation and Early Ordovician Lunshan Formation are mainly silty dolomites with micrite (MF1), silty dolomite (MF2), laminated silty dolomite (MF3), scarce fenestrae bonded dolomite (MF4), fine crystalline dolomite (MF5), fine crystalline dolomite with micrite (MF7). and breccia dolomite (MF8). These strata lack fossils, but laminations, birdeyes, and fenestral structures indicate upper intertidal to lower supratidal environments. The Early Ordovician Honghuayuan Formation is mainly dolomitized peloidal limestone (MF6), intraclastic dolomite (MF9), dolomitized oolitic limestone (MF10), oolitic dolomite (MF11), intraclastic limestone (MF12), and oolitic limestone with echinoderm fragments (MF13), indicating a high-energy shoal environment. Conclusions The Cambrian Mufushan Formation, Paotaishan Formation, and Guanyintai Formation were dominated by an intertidal environment, while the lower part of the Early Ordovician Lunshan Formation and the Honghuayuan Formation were dominated by a shoal environment, and the ancient water depth was relatively deeper. The Cambrian Guanyintai Formation in the Lower Yangtze area is a favorable target for future exploration of hot and dry rock reservoirs.
  • [1] 纪友亮,周勇,王改为,等. 下扬子地区古生界海相碳酸盐岩层序地层发育模式及储层预测[J]. 石油与天然气地质,2011,32(5):724-732,786.

    Ji Youliang, Zhou Yong, Wang Gaiwei, et al. Sequence stratigraphic models and reservoir prediction of the Paleozoic marine carbonates in the Lower Yangtze area[J]. Oil & Gas Geology, 2011, 32(5): 724-732, 786.
    [2] 路琳琳,纪友亮. 下扬子地区寒武纪层序格架及古地理演化[J]. 古地理学报,2013,15(6):765-776.

    Lu Linlin, Ji Youliang. Sequence stratigraphic framework and palaeogeography evolution of the Cambrian in Lower Yangtze area[J]. Journal of Palaeogeography, 2013, 15(6): 765-776.
    [3] 杨树锋,陈汉林,龚根辉,等. 下扬子地区早古生代晚期前陆盆地沉积特征与盆山过程[J]. 地球科学,2019,44(5):1494-1510.

    Yang Shufeng, Chen Hanlin, Gong Genhui, et al. Sedimentary characteristics and basin-orogen processes of the late Early Paleozoic foreland basins in the Lower Yangtze region[J]. Earth Science, 2019, 44(5): 1494-1510.
    [4] 方朝刚,黄正清,滕龙,等. 下扬子地区晚奥陶世凯迪期—早志留世鲁丹期岩相古地理及其油气地质意义[J]. 中国地质,2020,47(1):144-160.

    Fang Chaogang, Huang Zhengqing, Teng Long, et al. Lithofacies palaeogeography of the Late Ordovician Kaitian stage-the Early Silurian Rhuddanian stage in Lower Yangtze region and its petroleum geological significance[J]. Geology in China, 2020, 47(1): 144-160.
    [5] 刘德民,韦梅华,孙明行,等. 干热岩控热构造系统厘定与类型划分[J]. 地球科学,2022,47(10):3723-3735.

    Liu Demin, Wei Meihua, Sun Minghang, et al. Classification and determination of thermal control structural system of hot dry rock[J]. Earth Science, 2022, 47(10): 3723-3735.
    [6] 汪集旸,胡圣标,庞忠和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25-31.

    Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science & Technology Review, 2012, 30(32): 25-31.
    [7] 蔺文静,刘志明,王婉丽,等. 中国地热资源及其潜力评估[J]. 中国地质,2013,40(1):312-321.

    Lin Wenjing, Liu Zhiming, Wang Wanli, et al. The assessment of geothermal resources potential of China[J]. Geology in China, 2013, 40(1): 312-321.
    [8] 王贵玲,张薇,梁继运,等. 中国地热资源潜力评价[J]. 地球学报,2017,38(4):448-459.

    Wang Guiling, Zhang Wei, Liang Jiyun, et al. Evaluation of geothermal resources potential in China[J]. Acta Geoscientica Sinica, 2017, 38(4): 448-459.
    [9] 刘昕羽,胡修棉,许艺炜,等. 伊朗Lurestan-Fars地区晚白垩世微相与沉积环境演化[J]. 沉积学报,2023,41(4):1124-1137.

    Liu Xinyu, Hu Xiumian, Xu Yiwei, et al. Late Cretaceous carbonate microfacies and sedimentary environmental evolution in the Lurestan-Fars areas, Iran[J]. Acta Sedimentologica Sinica, 2023, 41(4): 1124-1137.
    [10] 陆川,王贵玲. 干热岩研究现状与展望[J]. 科技导报,2015,33(19):13-21.

    Lu Chuan, Wang Guiling. Current status and prospect of hot dry rock research[J]. Science & Technology Review, 2015, 33(19): 13-21.
    [11] 许汉奎. 江苏宁镇山脉仑山灰岩的新认识[J]. 地质科学,1976,11(3):235-245.

    Xu Hankui. New recognition of the Lunshan limestone in the Nanjing hills, southern Jiangsu[J]. Scientia Geologica Sinica, 1976, 11(3): 235-245.
    [12] 林天瑞. 宁镇山脉寒武系的划分和对比[J]. 地质论评,1991,37(5):396-403.

    Lin Tianrui. Stratigraphic division and correlation of the Cambrian in the Ningzhen hills[J]. Geological Review, 1991, 37(5): 396-403.
    [13] 朱茂炎,孙智新,杨爱华,等. 中国寒武纪岩石地层划分和对比[J]. 地层学杂志,2021,45(3):223-249.

    Zhu Maoyan, Sun Zhixin, Yang Aihua, et al. Lithostratigraphic subdivision and correlation of the Cambrian in China[J]. Journal of Stratigraphy, 2021, 45(3): 223-249.
    [14] 柴方园. 下扬子下古生界沉积相研究及有利区评价[J]. 油气藏评价与开发,2019,9(2):7-12.

    Chai Fangyuan. Study on Paleozoic sedimentary facies and favorable area evaluation in Lower Yangtze basin[J]. Reservoir Evaluation and Development, 2019, 9(2): 7-12.
    [15] 郭彤楼. 下扬子地区中古生界叠加改造特征与多源多期成藏[J]. 石油实验地质,2004,26(4):319-323.

    Guo Tonglou. Superimposition and modification of the Mesozoic and Paleozoic basins and multi-stages of hydrocarbon accumulation with multiple source rocks in Lower Yangtze area[J]. Petroleum Geology & Experiment, 2004, 26(4): 319-323.
    [16] 张淮,周荔青,李建青. 下扬子地区海相下组合油气勘探潜力分析[J]. 石油实验地质,2006,28(1):15-20.

    Zhang Huai, Zhou Liqing, Li Jianqing. Hydrocarbon exploration potential analysis of the lower marine formation assemblage in the Lower Yangtze region[J]. Petroleum Geology & Experiment, 2006, 28(1): 15-20.
    [17] 庞玉茂,张训华,肖国林,等. 上下扬子构造演化及叠合盆地油气地质条件对比[J]. 海洋地质与第四纪地质,2016,36(1):133-142.

    Pang Yumao, Zhang Xunhua, Xiao Guolin, et al. Comparative study of tectonic evolution and petroleum geological conditions of typical superimposed basins in Upper and Lower Yangtze Block[J]. Marine Geology & Quaternary Geology, 2016, 36(1): 133-142.
    [18] 俞凯,郭念发. 下扬子区下古生界油气地质条件评价[J]. 石油实验地质,2001,23(1):41-46,51.

    Yu Kai, Guo Nianfa. Evaluation on the geologic conditions of the Lower Paleozoic hydrocarbon in Lower Yangtze area[J]. Petroleum Geology & Experiment, 2001, 23(1): 41-46, 51.
    [19] 夏在连,花彩霞,刘计勇,等. 下扬子区下古生界油气有利勘探区带探讨[J]. 海洋地质与第四纪地质,2018,38(3):66-74.

    Xia Zailian, Hua Caixia, Liu Jiyong, et al. Favorable Lower Paleozoic exploration targets in the Lower Yangtze region[J]. Marine Geology & Quaternary Geology, 2018, 38(3): 66-74.
    [20] 徐曦,杨风丽,赵文芳. 下扬子区海相中、古生界上油气成藏组合特征分析[J]. 海洋石油,2011,31(4):48-53.

    Xu Xi, Yang Fengli, Zhao Wenfang. Analysis of characteristics of upper hydrocarbon play of Mesozoic-Paleozoic marine group, Lower Yangtze region[J]. Offshore Oil, 2011, 31(4): 48-53.
    [21] 张振,程日辉,许中杰,等. 下扬子区上石炭统船山组碳酸盐台地层序与相对海平面变化控制:以句容剖面为例[J]. 地学前缘,2018,25(2):232-245.

    Zhang Zhen, Cheng Rihui, Xu Zhongjie, et al. Sequence stratigraphy of the carbonate platform of the Upper Carboniferous Chuanshan Formation and relative sea level change control in the Lower Yangtze region: An example from outcrops in Jurong city, Jiangsu province[J]. Earth Science Frontiers, 2018, 25(2): 232-245.
    [22] 许中杰,蓝艺植,程日辉,等. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版),2017,47(5):1458-1470.

    Xu Zhongjie, Lan Yizhi, Cheng Rihui, et al. Carbonate geochemical record of sea-level change of Lunshan Formation in Lower Ordovician in Jurong area[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(5): 1458-1470.
    [23] 陈安定. 苏北盆地构造特征及箕状断陷形成机理[J]. 石油与天然气地质,2010,31(2):140-150.

    Chen Anding. Tectonic features of the Subei Basin and the forming mechanism of its dustpan-shaped fault depression[J]. Oil & Gas Geology, 2010, 31(2): 140-150.
    [24] 翟常博. 下扬子地区海相地层构造演化特征与海相保存单元评价[J]. 成都理工大学学报(自然科学版),2016,43(5):574-581.

    Zhai Changbo. Structural evolution of the eastern margin of the Dabie orogenic belt and its influence on the Lower Yangtze marine petroleum accumulation[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(5): 574-581.
    [25] 范德江,栾光忠,李师汤,等. 南京汤山上震旦统及古生界白云岩成因初探[J]. 海洋湖沼通报,1996(3):26-32.

    Fan Dejiang, Luan Guangzhong, Li Shitang, et al. The origin of dolostones appear in Upper-Sinian and Paleozoic, Tangshan, Nanjing[J]. Transaction of Oceanology and Limnology, 1996(3): 26-32.
    [26] 高长林,叶德燎,方成名. 下扬子早古生代碳酸盐岩的稀土元素特征及其意义[J]. 油气藏评价与开发,2011,1(1/2):1-6.

    Gao Changlin, Ye Deliao, Fang Chengming. Characteristics and significance of carbonate rocks REE during Early Palaeozoic in Lower Yangtze region[J]. Reservoir Evaluation and Development, 2011, 1(1/2): 1-6.
    [27] 高长林,黄泽光,叶德燎,等. 中国早古生代三大古海洋及其对盆地的控制[J]. 石油实验地质,2005,27(5):439-448.

    Gao Changlin, Huang Zeguang, Ye Deliao, et al. Three paleo-oceans in the Early Paleozoic and their control to basins in China[J]. Petroleum Geology & Experiment, 2005, 27(5): 439-448.
    [28] 龚晓星,佘晓宇,裴振洪,等. 下扬子区苏北—南黄海中生界、古生界构造格架对比分析[J]. 地质论评,2017,63(4):941-954.

    Gong Xiaoxing, She Xiaoyu, Pei Zhenhong, et al. Comparison and analysis of Meso-Paleozoic tectonic framework for north Jiangsu-south Yellow Sea, Lower Yangtze[J]. Geological Review, 2017, 63(4): 941-954.
    [29] 徐曦,高顺莉. 下扬子区新生代断陷盆地的构造与形成[J]. 地学前缘,2015,22(6):148-166.

    Xu Xi, Gao Shunli. The structure and formation of the Cenozoic fault basin in the Lower Yangtze region[J]. Earth Science Frontiers, 2015, 22(6): 148-166.
    [30] 鲁辉. 苏北盆地干热岩孔地质及测井曲线特征研究与分析[J]. 能源技术与管理,2022,47(1):184-185,189.

    Lu Hui. Study and analysis of borehole geology and logging characteristics of hot dry rock in Subei Basin[J]. Energy Technology and Management, 2022, 47(1): 184-185, 189.
    [31] 邹鹏飞,邱杨,范迪富. 苏北盆地典型地区中低温地热流体地球化学特征研究[J]. 高校地质学报,2022,28(2):262-273.

    Zou Pengfei, Qiu Yang, Fan Difu. Study on geochemical characteristics of mid-low temperature geothermal fluid in representative area of Subei Basin[J]. Geological Journal of China Universities, 2022, 28(2): 262-273.
    [32] 方邺森,任磊夫. 沉积岩石学教程[M]. 北京:地质出版社,1987:1-214.

    Fang Yesen, Ren Leifu. A course in sedimentary petrology[M]. Beijing: Geological Publishing House, 1987: 1-214.
    [33] 曾允孚,覃建雄. 沉积学发展现状与前瞻[J]. 成都理工学院学报,1999,26(1):1-7.

    Zeng Yunfu, Qin Jianxiong. Development and future of sedimentology[J]. Journal of Chengdu University of Technology, 1999, 26(1): 1-7.
    [34] Fügel E. Microfacies of carbonate rocks: Analysis, interpretation and application[M]. 2nd ed. Berlin, Heidelberg: Springer, 2010.
    [35] 陈焕疆,邱之俊. 中扬子区与上、下扬子区油气地质条件的对比分析[J]. 石油实验地质,1988,10(4):305-314.

    Chen Huanjiang, Qiu Zhijun. Comparative petroleum geological study between Middle Yangtze area and Upper and Lower Yangtze areas[J]. Experimental Petroleum Geology, 1998, 10(4): 305-314.
  • 加载中
通讯作者: 陈斌, [email protected]
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)  / Tables(2)

Article Metrics

Article views(91) PDF downloads(41) Cited by()

Proportional views
Related
Publishing history
  • Received:  2022-11-27
  • Revised:  2023-03-12
  • Accepted:  2023-04-28
  • Published:  2024-12-10

Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area

doi: 10.14027/j.issn.1000-0550.2023.026
Funds:

Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province, China BE2022859

Carbon Peak and Carbon Neutralization Science and Technology Innovation Special Fund of Jiangsu Province, China BE2022034

Abstract: Objective In the Lower Yangtze area, thick Early Paleozoic carbonates are potential reservoirs for oil, gas and geothermal resources. In 2021, well Sure1, drilled by the Geological Survey of Jiangsu province in the Subei Basin, successfully detected high-temperature hot-dry rock geothermal resources in the Early Paleozoic carbonates, bringing the Early Paleozoic carbonate sedimentary microfacies and environmental evolution widespread academic attention. Methods A detailed microfacies analysis was conducted on well Sure 1 in Subei Basin and three field outcrops in the Ningzhen Mountains to reconstruct the sedimentary environmental evolution of the Early Paleozoic carbonates in the Lower Yangtze area and provide key basic geological information for the exploration of hot-dry rock geothermal resources in the study area. Results Thirteen microfacies, corresponding to peritidal and shoal environments in an inner carbonate platform setting with no significant change in paleowater depth, were identified by integrating sedimentological and paleontological observations. The Cambrian Mufushan Formation and Guanyintai Formation and Early Ordovician Lunshan Formation are mainly silty dolomites with micrite (MF1), silty dolomite (MF2), laminated silty dolomite (MF3), scarce fenestrae bonded dolomite (MF4), fine crystalline dolomite (MF5), fine crystalline dolomite with micrite (MF7). and breccia dolomite (MF8). These strata lack fossils, but laminations, birdeyes, and fenestral structures indicate upper intertidal to lower supratidal environments. The Early Ordovician Honghuayuan Formation is mainly dolomitized peloidal limestone (MF6), intraclastic dolomite (MF9), dolomitized oolitic limestone (MF10), oolitic dolomite (MF11), intraclastic limestone (MF12), and oolitic limestone with echinoderm fragments (MF13), indicating a high-energy shoal environment. Conclusions The Cambrian Mufushan Formation, Paotaishan Formation, and Guanyintai Formation were dominated by an intertidal environment, while the lower part of the Early Ordovician Lunshan Formation and the Honghuayuan Formation were dominated by a shoal environment, and the ancient water depth was relatively deeper. The Cambrian Guanyintai Formation in the Lower Yangtze area is a favorable target for future exploration of hot and dry rock reservoirs.

CHEN Zhen, WANG LiJuan, LI Juan, HE JiaWei, YANG YongBiao, DENG Tao, GUAN JunPeng, GONG HaiTing, HU XiuMian. Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2191-2203. doi: 10.14027/j.issn.1000-0550.2023.026
Citation: CHEN Zhen, WANG LiJuan, LI Juan, HE JiaWei, YANG YongBiao, DENG Tao, GUAN JunPeng, GONG HaiTing, HU XiuMian. Early Paleozoic Carbonate Microfacies and Sedimentary Environment Evolution in the Lower Yangtze Area[J]. Acta Sedimentologica Sinica, 2024, 42(6): 2191-2203. doi: 10.14027/j.issn.1000-0550.2023.026
  • 华南板块下扬子地区早古生代时期为稳定的被动大陆边缘沉积,发育了巨厚的寒武系—奥陶系碳酸盐岩沉积[13],是油气资源和地热资源有利的潜在储层。地层单元由老到新依次为下寒武统幕府山组、中寒武统炮台山组、上寒武统观音台组、下奥陶统仑山组和红花园组 [4]。近年来,为了响应国家“碳达峰、碳中和”的战略目标以及查明江苏省内清洁能源的分布规律和资源潜力,江苏省地质调查研究院于2021年在江苏省泰州市兴化县部署了苏热1井,钻孔井深4 701 m,井底温度为155 ℃,达到了干热岩资源成藏的温度(>150 ℃)[5],首次发现并证实苏北盆地蕴藏了丰富的干热岩资源,该钻孔的干热岩储层潜在有利层位为早古生代的巨厚寒武纪—奥陶纪碳酸盐岩地层。众所周知,碳酸盐岩沉积环境和古地理演化的研究对于油气和地热资源勘探来说极为重要[68],干热岩优质储层的分布也与特定的沉积体系及环境密切相关,具有明显的“相控性”[910]

    干热岩在苏北盆地的发现和证实使得一直以来缺乏研究的早古生代碳酸盐岩沉积微相和沉积环境演化得到学术界广泛关注。然而,尽管前人针对下扬子地区早古生代碳酸盐岩的地层单元划分方案[1112]、古生物地层对比[13]、古地理演化[14]、油气地质条件[1520]、碳酸盐岩层序地层学[1,21]和碳酸盐岩地球化学[2223]等方面开展了大量的研究,但是针对早古生代碳酸盐岩地层的沉积微相类型和展布、沉积模式和沉积环境演化,尚未开展高分辨率的研究,缺乏从精细的碳酸盐岩微相角度重建早古生代地层的垂向沉积环境演化和进行横向空间对比。因此,为了更好地服务于国家“双碳目标”的伟大战略方针,提升清洁能源的利用率,更有效地预测和探勘干热岩资源,必须开展苏北盆地典型钻孔中早古生代碳酸盐岩地层以及苏北盆地周缘典型露头剖面碳酸盐岩地层的沉积微相以及垂向沉积演化等对比研究工作。

    以苏北盆苏热1井钻孔岩心和南京宁镇山脉地区三条野外剖面(仑山、汤山和幕府山)上的早古生代碳酸盐岩地层(寒武系幕府山组、炮台山组、观音台组和下奥陶统仑山组和红花园组)为研究对象,对其开展详细的沉积微相分析,重建了下扬子地区早古生代沉积微相展布、沉积相以及沉积环境垂向变化,以期为干热岩型地热资源有效区的选择提供基础地质资料。

  • 下扬子地区是我国现代地质学的摇篮,同时也是我国南方重要的油气勘探区之一(图1a),该区在新元古代结晶基底之上,经历了古生代海相克拉通盆地,中、新生代前陆盆地和断拗盆地演化,形成了巨厚的古生界海相碳酸盐岩和中、新生界陆相碎屑岩地层[2326]。下扬子地区在早古生代时期处于相对稳定的陆缘海、碳酸盐岩台地沉积环境,发育四类地质构造单元,分别是下扬子北缘裂陷盆地、下扬子东南缘被动大陆边缘盆地和下扬子碳酸盐岩台地、沪昆台地,为“两台两盆”的古地理格局[1,2627]。至早古生代末期,受加里东运动影响,扬子地块与华夏地块发生汇聚,下扬子地区结束了“两盆夹一台”的古地理格局,进入前陆盆地沉积阶段,开始接受陆源碎屑岩沉积[2829]。苏热1井位于下扬子地区苏北盆地柘垛低凸起之上,终孔井深4 701.68 m[3031],从顶到底依次钻揭新近系(盐城组)、古近系(三垛组、阜宁组和泰州组)、上白垩统(浦口组)碎屑岩以及奥陶系(仑山组和红花园组)至寒武系(观音台组和炮台山组)碳酸盐岩。

    Figure 1.  Tectonic and geologic map of the Lower Yangtze area (a); Early Paleozoic lithologic stratigraphic units (b, modified from reference [1])

  • 由于苏热1井钻井取心较少以及苏北盆地早古生代碳酸盐岩地层剖面出露较少,仅获取苏热1井上寒武统观音台组、下奥陶统红花园组岩心样品,远不足以重建下扬子地区早古生代碳酸盐岩的沉积微相与沉积环境演化。因此,采集了三条南京宁镇山脉地区早古生代地层剖面(幕府山、仑山和汤山,图1a),获取了较完整的早古生代碳酸盐岩地层,主要包括寒武系幕府山组、炮台山组、观音台组和下奥陶统仑山组和红花园组(图1b)。仑山剖面连续性良好、地层出露较完整,厚250 m,主要包括观音台组和仑山组,采样82件,样品编号为21NJ01~21NJ82。汤山剖面厚25 m,主要是仑山组和红花园组,采样11件,样品编号为21NJ83~21NJ93。幕府山剖面厚70 m,主要包括幕府山组和炮台山组,采样24件,样品编号为21NJ94~21NJ117。野外剖面采样间隔为3~5 m,而苏热1井由于取心率的差异,采样间隔为0.1~0.5 m不等,采样73件,样品编号为21SR67~21SR139,剖面和钻孔共采集190件样品用于碳酸盐岩微相分析,所涉及的岩石地层单元及野外露头剖面和钻井岩心见表1。为了区分薄片中碳酸盐岩矿物成分,所有岩石薄片均被茜素红S染色剂着色,其中方解石染红色,白云石不染色。

    时代地层露头剖面钻井岩心
    早奥陶世红花园组汤山苏热1井
    仑山组仑山、汤山
    寒武纪观音台组仑山苏热1井
    炮台山组仑山、幕府山
    幕府山组幕府山

    Table 1.  Lithostratigraphic units, outcrop profile, and drilling cores involved in this study

    碳酸盐微相分析是在野外工作的基础上,根据岩石薄片中岩石成分、颗粒组成、基质类型、生物组合和沉积组构,进行微相划分、描述和解释,重建沉积环境。本文碳酸盐岩分类命名在成分分类命名的基础上,采用碳酸盐岩结构分类方案[3233]。碳酸盐岩微相和沉积环境解释时参考Flügel[34]关于镶边碳酸盐岩台地标准微相的沉积分布模式。

  • 下扬子地区早古生代以碳酸盐岩沉积为主,自下而上分别是寒武统幕府山组、炮台山组、观音台组和下奥陶统仑山组和红花园组[35]。炮台山组下部为灰黑色薄层白云岩、上部为浅红色—浅灰色薄层白云岩沉积(图2a),与上覆观音台组整合过渡接触(图2b)。观音台组下部为褐红色薄—中层白云岩,上部为含燧石结核的厚层白云岩,见直径为0.5~1.0 m硅质结核(图2c)、多期次辉绿岩墙(图2d)以及刀砍纹和软沉积物变形(图2e)。仑山组底部为砂糖状中晶—粗晶白云岩(图2f),下部为中—厚层含灰白云岩与含云灰岩互层,中部为中—厚层含燧石条带云质灰岩,上部为中—厚层含云灰岩。红花园组下部为厚层砂屑亮晶灰岩(图2g),上部以生物碎屑灰岩为主(图2h)。

    Figure 2.  Field photos of Early Paleozoic carbonates in the Ningzhen Mountains area

  • 对比Flügel[34]建立的标准微相,将下扬子南京宁镇山脉地区及苏热1井早古生代碳酸盐岩划分为13种微相类型(MF1~MF13,表2),除红花园组为灰岩沉积外,其他地层单元(幕府山组、炮台山组、观音台组、仑山组)均为白云岩沉积。

    微相微相名称主要矿物和颗粒组分结构类型对应的Flügel[34]标准微相沉积构造沉积环境
    MF1含灰粉晶白云岩方解石、白云石晶粒SMF23鸟眼、缝合线潮间—潮上带
    MF2粉晶白云岩白云石晶粒SMF23示顶底潮上带
    MF3纹层状粉晶白云岩白云石晶粒SMF25平行层理、缝合线潮间—浅潮下带
    MF4藻黏结白云岩白云石、微生物/藻黏结结构SMF19窗格孔潮间带
    MF5细晶白云岩白云石晶粒SMF23潮间—潮上带
    MF6云质似球粒灰岩似球粒颗粒支撑SMF16潮间—潮上带
    MF7含灰细晶白云岩方解石、白云石晶粒结构、交代残余结构SMF23潮间—潮上带
    MF8角砾白云岩角砾颗粒SMF24潮上带
    MF9残余砂屑白云岩砂屑、鲕粒颗粒支撑、交代残余SMF16浅滩
    MF10白云石化鲕粒灰岩砂屑、鲕粒颗粒支撑、交代残余SMF15弱定向浅滩
    MF11残余鲕粒白云岩鲕粒颗粒支撑、交代残余SMF15浅滩
    MF12砂屑灰岩砂屑、海百合颗粒支撑SMF16粒序浅滩
    MF13海百合鲕粒灰岩鲕粒、海百合颗粒支撑SMF15、SMF11泥晶套、弱定向浅滩

    Table 2.  Description and environmental interpretation of the 13 identified microfacies in Ningzhen Mountains area and well Sure 1

  • 该微相岩性主要为钙质厚层白云岩,白云石含量大于85%(图3a),方解石含量小于15%,见于仑山剖面观音台组中部、汤山剖面红花园组底部和中部。该微相由不等粒白云石晶粒组成,白云石晶粒粒径一般小于0.1 mm,他形,密集堆积,局部可见鸟眼构造及缝合线构造。鸟眼构造和粉晶白云石的发育指示该微相可能为潮间上部和潮上带下部局限的沉积环境,相当于Flügel[34]标准微相SMF23。

    Figure 3.  Microphotographs of representative microfacies MF1 to MF7 in Early Paleozoic carbonates in the Nanjing Ningzhen mountains and well Sure 1 area

  • 该微相岩性主要为中—厚层状白云岩,见于仑山剖面观音台组底部、中部和苏热1井观音台组中—上部。该微相由不等粒粉晶白云石晶粒组成(图3b),不含或偶见方解石,他形,致密堆积,局部见蒸发盐溶蚀后形成的孔洞及示顶底构造。该微相无纹层、无化石,指示蒸发区或微咸水环境,相当于Flügel[34]标准微相SMF23,该微相与MF1类似,均为潮间上部和潮上带下部沉积环境,但MF2相比于MF1的白云岩化作用更强烈。

  • 该微相岩性为厚层白云岩,白云石含量大于95%,见于仑山剖面观音台组中部和苏热1井观音台组。该微相由不同粒级的粉晶白云石构成纹层构造(图3c,d),白云石晶粒他形且堆积紧密,局部可见粉砂级石英、云母碎片等陆源碎屑(图3d),偶见缝合线构造。该微相无化石及蒸发盐矿物,纹层构造发育,指示上潮间带或潮上带沉积环境,相当于Flügel[34]标准微相SMF25。

  • 该微相岩性为中—厚层状白云岩,见于仑山剖面观音台组底部与顶部以及幕府山剖面幕府山组。该微相主要由不同成分的毫米级纹层组成。较细纹层为微生物/藻席,略粗纹层由密集堆积的白云石晶粒构成,局部发育窗格构造(图3e)。该微相具微生物/藻席和窗格构造形成的纹层结构,为潮间带典型标志,相当于Flügel[34]标准微相SMF19。

  • 该微相岩性为厚层块状白云岩,见于仑山和汤山剖面仑山组、苏热1井观音台组,发育大量石英脉。该微相主要由细晶白云石组成(图3f),粒径介于0.1~0.2 mm,多为半自形—自形,见雾心亮边和鞍状结构。该微相为细晶白云岩,白云石晶粒为典型的鞍状结构,且越接近石英脉,白云石晶粒自形程度越高,粒径越大,因此细晶白云岩可能是热液作用产物。

  • 该微相岩性为中层白云岩,主要见于汤山剖面红花园组中部,主要由白云石晶粒组成(图3h),呈等粒粒状结构,晶粒粒径介于0.10~0.15 mm,多为半自形—自形,致密堆积。该微相无纹层、无化石,指示蒸发区或微咸水环境,但未见蒸发盐矿物或其他暴露标志,相当于Flügel[34]标准微相SMF23,可能为潮间上部和潮上带下部沉积环境。

  • 该微相岩性为中层状白云岩,仅见于幕府山剖面炮台山组,主要由角砾状白云岩组成(图4a)。该微相呈现出破碎状,白云岩角砾粒径介于0.2~2.0 mm,多呈棱角状—次棱角状,分选磨圆较差,为粉晶白云石晶粒。该微相白云石角砾由粉晶白云石构成,无纹层且无化石,指示了砾石源区为蒸发区或微咸水环境。棱角状—次棱角状形态表明砾石未经长距离搬运,可能为粉晶白云岩经岩溶垮塌作用形成。该微相相当于Flügel[34]标准微相SMF24。

    Figure 4.  Microphotographs of representative microfacies MF8 to MF13 in Early Paleozoic carbonates in the Nanjing Ningzhen mountains and well Sure 1 area

  • 该微相岩性为薄层灰岩,见于汤山剖面红花园组上部,主要由似球粒和方解石亮晶胶结物组成(图3g),见少量粉砂级陆源石英碎屑。似球粒为次棱角状—次磨圆状泥晶碎屑。该微相以极细颗粒支撑的次圆状和次棱角状似球粒聚集物为标志,无纹层、无化石,相当于Flügel[34]标准微相SMF16,指示高能浅滩环境。

  • 该微相岩性为中—厚层白云岩,主要见于仑山剖面观音台组上部、兴古1井观音台组顶部,主要由砂屑和少量鲕粒组成(图4b)。砂屑主要由粉晶他形白云石晶粒组成,粒径介于0.2~0.3 mm,呈圆状—次圆状,分选磨圆较好;鲕粒主要为粉晶他形白云石晶粒组成,椭球状或次圆状,呈放射状,亮晶白云石胶结物。该微相颗粒主要为砂屑和鲕粒,基质以亮晶白云石为主,指示水动力较强的浅滩环境,相当于Flügel[34]标准微相SMF15。

  • 该微相岩性为中层状灰岩,见于苏热1井和汤山剖面红花园组中部,主要由鲕粒和亮晶方解石胶结物组成(图4c),见少量砂屑和棘皮碎片。鲕粒主要由粉晶白云石晶粒构成,为球状或次圆状,粒径介于0.1~0.3 mm,呈放射状,分选一般,交代残余结构。砂屑和鲕粒的长轴方向略具定向特征。该微相的颗粒类型主要为鲕粒,基质为亮晶方解石胶结物,指示水体能量较高,为高能的浅滩环境,相当于Flügel[34]标准微相SMF15。

  • 该微相岩性为中层状灰岩,仅见于苏热1井观音台组,主要由鲕粒组成(图4d),颗粒支撑。鲕粒主要由粉晶白云石构成,粒径介于0.10~0.25 mm,球状或圆状,分选一般,呈交代残余结构,紧密堆积。该微相颗粒主要为鲕粒,指示水体能量较高,为高能的浅滩环境,相当于Flügel[34]标准微相SMF15。

  • 该微相岩性为薄层状灰岩,见于苏热1井红花园组,主要由砂屑和亮晶方解石胶结物组成(图4e),偶见海百合碎片。砂屑呈次圆状—圆状,粒径介于0.10~0.15 mm,分选较好。该微相主要由砂屑和亮晶方解石胶结物组成,偶见海百合茎碎片,指示浅滩高能环境,相当于Flügel[34]标准微相SMF16。

  • 该微相岩性为薄层状灰岩,主要见于苏热1井红花园组。该微相颗粒主要为海百合和鲕粒,少量砂屑,基质主要为亮晶方解石胶结物(图4f)。海百茎碎片粒径介于2~4 mm,见共轴胶结;鲕粒粒径介于0.2~0.5 mm,呈椭球状或球状,多为放射鲕和薄皮鲕,泥晶化作用强烈,形成泥晶套结构,鲕粒核心多为海百合茎碎片和砂屑颗粒。该微相主要由鲕粒和亮晶胶结物组成,相当于Flügel[34]标准微相SMF15,为高能浅滩沉积环境。

  • 综合苏北盆地苏热1井钻孔岩心和南京宁镇山脉地区三条野外露头剖面(幕府山、仑山和汤山)的碳酸盐岩地层微相分析,重建了下扬子地区早古生代碳酸盐岩地层的沉积模式。研究区沉积微相变化连续,古水深可侧向对比,虽然缺乏台地边缘生物礁,但在各个露头剖面和钻井岩心中均存在台地边缘高能浅滩记录,因此研究区主要为碳酸盐岩台地模式,以潮坪和浅滩沉积环境为主(图5)。潮坪环境,水体浅、水体能量较低、沉积环境相对稳定,主要岩石类型为含灰粉晶白云岩(MF1)、粉晶白云岩(MF2)和纹层状粉晶白云岩(MF3),局部见窗格藻黏结白云岩(MF4)、细晶白云岩(MF5)、含灰细晶白云岩(MF7)、角砾白云岩(MF8)等类型,缺乏化石,但见纹层结构、鸟眼构造、窗格孔构造等,指示潮间上部和潮上带下部沉积环境为主,穿插潮间带沉积环境,同时存在岩浆热液活动。浅滩环境,水体浅、水体能量高,主要的岩石类型为云质似球粒灰岩(MF6)、残余砂屑白云岩(MF9)、白云石化鲕粒灰岩(MF10)、残余鲕粒白云岩(MF11)、砂屑灰岩(MF12)和海百合茎鲕粒灰岩(MF13),生物碎屑主要为海百合碎片,见粒序结构、泥晶套结构和弱定向构造等,指示干旱炎热环境下浅滩沉积物发生白云石化作用。

    Figure 5.  Early Paleozoic carbonates sedimentary model for the Lower Yangtze area

  • 综合苏北盆地苏热1井钻孔岩心和南京宁镇山脉地区三条野外露头剖面(幕府山、仑山和汤山)的微相研究,重建了下扬子地区早古生代沉积环境演化和相对海平面变化(图6,7)。

    Figure 6.  Lithological log of the Early Paleozoic carbonates in the Ningzhen Mountains area

    Figure 7.  Lithological log of the Early Paleozoic carbonates in well Sure 1

    在南京宁镇山脉地区,幕府山组顶部主要为窗格藻黏结白云岩(MF4),指示幕府山组为潮间带沉积环境,而炮台山组底部以角砾白云岩(MF8)为主,角砾由粉晶白云岩构成,分选和磨圆差,可能为粉晶白云岩经岩溶垮塌作用形成,指示潮间上部和潮上带下部沉积环境,相对海平面无明显变化。观音台组以粉晶白云岩为主,微相类型分别为含灰粉晶白云岩(MF1)、粉晶白云岩(MF2)和纹层状粉晶白云岩(MF3),指示观音台组主要为潮间上部和潮上带下部沉积环境;同时穿插窗格藻黏结白云岩(MF4)和细晶白云岩(MF5),窗格藻黏结白云岩指示潮间带沉积环境,而细晶白云岩则可能是热液作用产物,观音台组两次期辉绿岩墙也支持观音台组沉积时期存在热液活动。仑山组下部以残余砂屑白云岩(MF9)为主,指示仑山组下部主要为高能浅滩沉积环境,偶见纹层状粉晶白云岩(MF3)指示的潮间上部和潮上带下部沉积环境。而仑山组上部以窗格藻黏结白云岩(MF4)为主,指示仑山组上部主要为潮间带沉积环境。红花园组底部主要为含灰粉晶白云岩(MF1)、云质似球粒灰岩(MF6)、白云石化鲕粒灰岩(MF10)和含灰细晶白云岩(MF1),指示红花园组底部沉积环境为潮间上部和潮上带下部沉积环境,穿插高能浅滩沉积环境。

    在苏热1井钻井岩心,主要涉及观音台组和红花园组,其中观音台组主要为白云岩沉积,而红花园组主要为灰岩沉积。观音台组以粉晶白云岩(MF2)和细晶白云岩(MF5)为主,粉晶白云岩指示观音台组主要为潮间上部和潮上带下部沉积环境,而细晶白云岩则可能与南京宁镇山脉地区相似,为热液活动产物,同时观音台组偶见残余鲕粒白云岩(MF11),则指示高能浅滩沉积环境。红花园组以白云石化鲕粒灰岩(MF10)、砂屑灰岩(MF12)、海百合鲕粒灰岩(MF13)为主,指示红花园组主要为高能浅滩沉积环境;同时红花园组见含灰粉晶白云岩(MF1),指示红花园组穿插潮间上部和潮上带下部沉积环境。

    整体而言,苏北盆地苏热1井早古生代岩石地层及沉积环境,可与南京宁镇山脉地区同时期地层对比,其中下奥陶统仑山组下部和红花园组沉积于浅滩环境,比寒武系幕府山组、炮台山组、和观音台组的潮间带环境水体深。

  • 基于钻井现场测录井内部资料的详细分析,发现观音台组的声波孔隙度和导热率相比于上覆地层的仑山组和红花园组更高。这一发现为深入理解观音台组的地质特征和储层潜力提供了重要线索。

    首先,通过声波测井数据,观察到观音台组的声波孔隙度明显高于上覆地层。声波孔隙度的增加通常与岩石内部的孔隙结构和连通性密切相关,表明观音台组具有更为发育的孔隙网络,有利于流体的储存和运移。其次,导热率的测量结果进一步证实了观音台组的高储热潜力。导热率是衡量岩石传递热量的能力,观音台组的高导热率意味着其能够更有效地将地热能传递到储层中,从而提高干热岩的开发效率。最后,在薄片观察中,发现观音台组主要由细晶白云岩组成,这种岩石类型具有较高的面孔率。细晶白云岩的晶粒细小,晶间孔隙发育良好,为流体的储存和运移提供了有利条件。此外,白云岩的减体积效应进一步促进了白云石晶间孔的广泛发育,增强了储层的孔隙度和渗透性。

    综上所述,观音台组不仅具有高孔隙度和高导热率,还拥有良好的岩石物理性质和孔隙结构,使其成为优质的干热岩储层。在下扬子地区未来的干热岩勘探开发中,观音台组无疑是最有利的靶区之一。这一发现将为区域能源结构的优化和地热资源的可持续开发提供重要支持。

  • (1)苏热1井钻孔岩心和南京宁镇山脉地区早古生代碳酸盐岩可划分13种沉积微相,以潮坪沉积环境为主,偶见高能浅滩沉积,相对海平面无明显变化。

    (2)寒武系幕府山组、炮台山组和观音台组以潮间带环境为主,而下奥陶统仑山组下部和红花园组以浅滩环境为主,古水深相对变深。

    (3)下扬子地区寒武系观音台组是未来干热岩储层勘探的有利靶区。

Reference (35)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return